

RapiDragon (迅龙)

PFS132

8bit MTP MCU with 12-bit ADC

Datasheet

Version 0.03 April 23, 2024

Copyright © 2024 by PADAUK Technology Co., Ltd., all rights reserved. 6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C. TEL: 886-3-572-8688 🙀 www.padauk.com.tw

IMPORTANT NOTICE

PADAUK Technology reserves the right to make changes to its products or to terminate production of its products at any time without notice. Customers are strongly recommended to contact PADAUK Technology for the latest information and verify whether the information is correct and complete before placing orders.

PADAUK Technology products are not warranted to be suitable for use in life-support applications or other critical applications. PADAUK Technology assumes no liability for such applications. Critical applications include, but are not limited to, those which may involve potential risks of death, personal injury, fire or severe property damage.

Any programming software provided by PADAUK Technology to customers is of a service and reference nature and does not have any responsibility for software vulnerabilities. PADAUK Technology assumes no responsibility for any issue caused by a customer's product design. Customers should design and verify their products within the ranges guaranteed by PADAUK Technology. In order to minimize the risks in customers' products, customers should design a product with adequate operating safeguards.

Table of content

Re	Revision History8					
Us	Jsage Warning8					
1.	Features9					
	1.1. 1.2. 1.3. 1.4.	Special Features System Features CPU Features Ordering/ Package Information	9 9			
2.	Gener	al Description and Block Diagram	11			
3.	Pin As	ssignment and Description	12			
4.	Devic	e Characteristics	19			
	4.1. 4.2.	AC/DC Device Characteristics				
	4.3.	Typical ILRC frequency vs. VDD and temperature				
	4.4.	Typical IHRC frequency deviation vs. VDD(calibrated to 16MHz)				
	4.5.	Typical ILRC Frequency vs. Temperature	22			
	4.6.	Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)				
	4.7.	Typical operating current vs. VDD @ system clock = ILRC/n				
	4.8.	Typical operating current vs. VDD @ system clock = IHRC/n				
	4.9.	Typical operating current vs. VDD @ system clock = 4MHz EOSC / n				
	4.10.	Typical operating current vs. VDD @ system clock = 32KHz EOSC / n				
	4.11.	Typical operating current vs. VDD @ system clock = 1MHz EOSC / n				
	4.12.	Typical IO driving current (IOH) and sink current (IOL)				
	4.13.	Typical IO input high/low threshold voltage (V _{IH} /V _{IL})				
		Typical resistance of IO pull high device				
	4.15.	Typical resistance of IO pull low device				
		Typical power down current (IPD) and power save current (IPS)				
5.	Funct	ional Description	30			
	5.1.	Program Memory - MTP	30			
	5.2.	Boot Procedure	30			
		5.2.1. Timing charts for reset conditions	31			
	5.3.	Data Memory - SRAM	32			

5.4.	Oscillator and clock	32
	5.4.1. Internal High RC oscillator and Internal Low RC oscillator	32
	5.4.2. Chip calibration	33
	5.4.3. IHRC Frequency Calibration and System Clock	33
	5.4.4. External Crystal Oscillator	35
	5.4.5. System Clock and LVR level	37
	5.4.6. System Clock Switching	38
5.5.	Comparator	39
	5.5.1. Internal reference voltage (Vinternal R)	40
	5.5.2. Using the comparator	42
	5.5.3. Using the comparator and bandgap 1.20V	43
5.6.	VDD/2 LCD Bias Voltage Generator	
5.7.	16-bit Timer (Timer16)	44
5.8.	8-bit Timer (Timer2/Timer3) with PWM generation	46
	5.8.1. Using the Timer2 to generate periodical waveform	48
	5.8.2. Using the Timer2 to generate 8-bit PWM waveform	49
	5.8.3. Using the Timer2 to generate 6-bit PWM waveform	51
5.9.	11-bit PWM Generator	52
	5.9.1. PWM Waveform	52
	5.9.2. Hardware and Timing Diagram	53
	5.9.3. Equations for 11-bit PWM Generator	54
	5.9.4. Complementary PWM with Dead Zones	54
5.10.	WatchDog Timer	56
5.11.	Interrupt	57
5.12.	Power-Save and Power-Down	59
	5.12.1.Power-Save mode ("stopexe")	59
	5.12.2.Power-Down mode ("stopsys")	60
	5.12.3.Wake-up	61
5.13.	IO Pins	61
5.14.	Reset and LVR	62
	5.14.1.Reset	62
	5.14.2.LVR reset	63
5.15.	Analog-to-Digital Conversion (ADC) module	63
	5.15.1.The input requirement for AD conversion	64
	5.15.2.Select the reference high voltage	65
	5.15.3.ADC clock selection	65
	5.15.4.Configure the analog pins	65
	5.15.5.Using the ADC	66

	5.16.	Multiplier	. 67
6.	IO Re	gisters	. 68
	6.1.	ACC Status Flag Register (<i>flag</i>), IO address = 0x00	. 68
	6.2.	Stack Pointer Register (<i>sp</i>), IO address = 0x02	. 68
	6.3.	Clock Mode Register (<i>clkmd</i>), IO address = 0x03	. 68
	6.4.	Interrupt Enable Register (<i>inten</i>), IO address = 0x04	. 69
	6.5.	Interrupt Request Register (<i>intrq</i>), IO address = 0x05	. 69
	6.6.	Multiplier Operand Register (<i>mulop</i>), IO address = 0x08	. 69
	6.7.	Multiplier Result High Byte Register (<i>mulrh</i>), IO address = 0x09	. 69
	6.8.	Timer16 mode Register (<i>t16m</i>), IO address = 0x06	.70
	6.9.	External Oscillator setting Register (<i>eoscr</i>), IO address = 0x0a	. 70
	6.10.	Interrupt Edge Select Register (<i>integs</i>), IO address = 0x0c	.71
	6.11.	Port A Digital Input Enable Register (<i>padier</i>), IO address = 0x0d	
	6.12.	Port A Data Register (pa), IO address = 0x10	.72
	6.13.	Port A Control Register (pac), IO address = 0x11	.72
	6.14.	Port A Pull-High Register (<i>paph</i>), IO address = 0x12	.72
	6.15.	Port A Pull-Low Register (<i>papl</i>), IO address = 0x1b	
	6.16.	Port B Digital Input Enable Register (pbdier), IO address = 0x0e	
	6.17.	Port B Data Register (<i>pb</i>), IO address = 0x14	.73
	6.18.	Port B Control Register (<i>pbc</i>), IO address = 0x15	.73
	6.19.	Port B Pull-High Register (<i>pbph</i>), IO address = 0x16	.73
		Port B Pull-Low Register (<i>pbpl</i>), IO address =0x1F	
	6.21.	Miscellaneous Register (<i>misc</i>), IO address = 0x17	
	6.22.	Comparator Control Register (gpcc), IO address = 0x18	.74
		Comparator Selection Register (gpcs), IO address = 0x19	
	6.24.	Timer2 Control Register (tm2c), IO address = 0x1c	.75
	6.25.	Timer2 Counter Register (<i>tm2ct</i>), IO address = 0x1d	.75
	6.26.	Timer2 Scalar Register (<i>tm</i> 2 <i>s</i>), IO address = 0x1e	
	6.27.	Timer2 Bound Register (<i>tm2b</i>), IO address = 0x09	.76
	6.28.	PWMG0 control Register (<i>pwmg0c</i>), IO address = 0x20	
	6.29.	PWMG0 Scalar Register (<i>pwmg0s</i>), IO address = 0x21	.76
	6.30.	PWMG0 Counter Upper Bound High Register (<i>pwmg0cubh</i>), IO address = 0x24	
	6.31.	PWMG0 Counter Upper Bound Low Register (<i>pwmg0cubl</i>), IO address = 0x25	.77
	6.32.	PWMG0 Duty Value High Register (<i>pwmg0dth</i>), IO address = 0x22	.77
	6.33.	PWMG0 Duty Value Low Register (<i>pwmg0dtl</i>), IO address = 0x23	
	6.34.	Timer3 Control Register (tm3c), IO address = 0x32	
	6.35.	Timer3 Counter Register (<i>tm3ct</i>), IO address = 0x33	

	6.36.	Timer3 Scalar Register (<i>tm</i> 3s), IO address = 0x34	. 78			
	6.37.	Timer3 Bound Register (<i>tm3b</i>), IO address = 0x3f	. 78			
	6.38.	ADC Control Register (<i>adcc</i>), IO address = 0x3b	. 78			
	6.39.	ADC Mode Register (<i>adcm</i>), IO address = 0x3c	. 79			
	6.40.	ADC Regulator Control Register (<i>adcrgc</i>), IO address = 0x3d7				
	6.41.	ADC Result High Register (<i>adcrh</i>), IO address = 0x3e	. 80			
	6.42.	ADC Result Low Register (<i>adcrl</i>), IO address = 0x3f	. 80			
	6.43.	PWMG1 control Register (<i>pwmg1c</i>), IO address = 0x26	. 80			
	6.44.	PWMG1 Scalar Register (pwmg1s), IO address = 0x27	. 81			
	6.45.	PWMG1 Counter Upper Bound High Register (pwmg1cubh), IO address = 0x2A	. 81			
	6.46.	PWMG1 Counter Upper Bound Low Register (pwmg1cubl), IO address = 0x2B	. 81			
	6.47.	PWMG1 Duty Value High Register (<i>pwmg1dth</i>), IO address = 0x28	. 81			
	6.48.	PWMG1 Duty Value Low Register (<i>pwmg1dtl</i>), IO address = 0x29	. 81			
	6.49.	PWMG2 control Register (<i>pwmg2c</i>), IO address = 0x2C	. 81			
	6.50.	PWMG2 Scalar Register (<i>pwmg2s</i>), IO address = 0x2D	. 82			
	6.51.	PWMG2 Counter Upper Bound High Register (pwmg2cubh), IO address = 0x30	. 82			
	6.52.	PWMG2 Counter Upper Bound Low Register (<i>pwmg2cubl</i>), IO address = 0x31	. 82			
	6.53.	PWMG2 Duty Value High Register (<i>pwmg2dth</i>), IO address = 0x2E	. 82			
	6.54.	PWMG2 Duty Value Low Register (<i>pwmg2dtl</i>), IO address = 0x2F	. 83			
7.	Instru	ictions	. 83			
	7.1.	Data Transfer Instructions	. 84			
	7.2.	Arithmetic Operation Instructions	. 86			
	7.3.	Shift Operation Instructions	. 88			
	7.4.	Logic Operation Instructions	. 89			
	7.5.	Bit Operation Instructions	. 91			
	7.6.	Conditional Operation Instructions	. 92			
	7.7.	System control Instructions	. 94			
	7.8.	Summary of Instructions Execution Cycle	. 95			
	7.9.	Summary of affected flags by Instructions	. 96			
	7.10.	BIT definition	. 96			
8.	Code	Options	. 97			
9.	Speci	al Notes	. 98			
	9.1.	Using IC	. 98			
		9.1.1. IO pin usage and setting				
		9.1.2. Interrupt				
		9.1.3. System clock switching1				

	9.1.4. Watchdog	
	9.1.5. TIMER time out	
	9.1.6. IHRC	
	9.1.7. LVR	
	9.1.8. The result of Comparator controls the PWM output pins	
	9.1.9. Program Writing	
9.2.	Using ICE	
	-	

Revision History

Revision	Date	Description
	2024/04/23	1. Updated description of System Features
		2. Amend Section 5.13 Hardware diagram of IO buffer
0.03		3. Amend Section 5.13 PA0 Configuration Table
0.03		4. Updated description of Watchdog and Reset
		5. Modify the value of EOSCR
		6. Other known details bug correct

Usage Warning

User must read all application notes of the IC by detail before using it. Please visit the official website to download and view the latest APN information associated with it. http://www.padauk.com.tw/en/product/show.aspx?num=153&kw=PFS132

(The following picture are for reference only.)

♦♦ PFS132 ♦♦

- General purpose series
- Not supposed to use in AC RC step-down powered or high EFT requirement applications
- Operating temperature : -40°C ~ 85°C

Feature	Documents Software & Tools Application Note		
Content	Description	Download (CN)	Download (EN)
APN001	Output impedance of ADC analog signal source	*	<u>*</u>
APN002	Over voltage protection	±	÷
APN003	Over voltage protection	*	<u>*</u>
APN004	Semi-Automatic writing handler	*	¥
APN005	Effects of over voltage input to ADC	*	±
APN007	Setting up LVR level	*	±
APN011	Semi-Automatic writing Handler improve writing stabili	ty 🛓	<u>*</u>
APN013	Notification of crystal oscillator	*	÷
APN019	E-PAD PCB layout guideline	*	*

1. Features

1.1. Special Features

- General purpose series
- Not supposed to use in AC RC step-down powered or high EFT requirement applications.
 PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.
- Operating temperature range: -40°C ~ 85°C

1.2. System Features

- 2KW MTP program memory
- 128 Bytes data RAM
- One hardware 16-bit timer
- Two hardware 8-bit timers with PWM generation
- Three hardware 11-bit PWM generators (PWMG0, PWMG1 & PWMG2)
- Provide one hardware comparator
- Provide 1T 8x8 hardware multiplier
- 14 IO pins with optional pull-high/pull-low resistor
- Every IO pin can be configured to enable wake-up function
- Bandgap circuit to provide 1.20V reference voltage
- Up to 12-channel 12-bit resolution ADC with one channel comes from internal Bandgap reference voltage or 0.25*V_{DD}
- Provide ADC reference high voltage: external input, internal VDD, Bandgap(1.20V), 4V, 3V, 2.4V, 2V, 1.6V
- Clock sources: internal high RC oscillator(IHRC), internal low RC oscillator(ILRC) and external crystal oscillator(EOSC)
- For every wake-up enabled IO, two optional wake-up speed are supported: normal and fast
- Built-in half VDD bias voltage generator to provide maximum 5x9 dots LCD display
- Eight levels of LVR reset: 4.0V, 3.5V, 3.0V, 2.75V, 2.5V, 2.2V, 2.0V, 1.8V
- Four selectable external interrupt pins

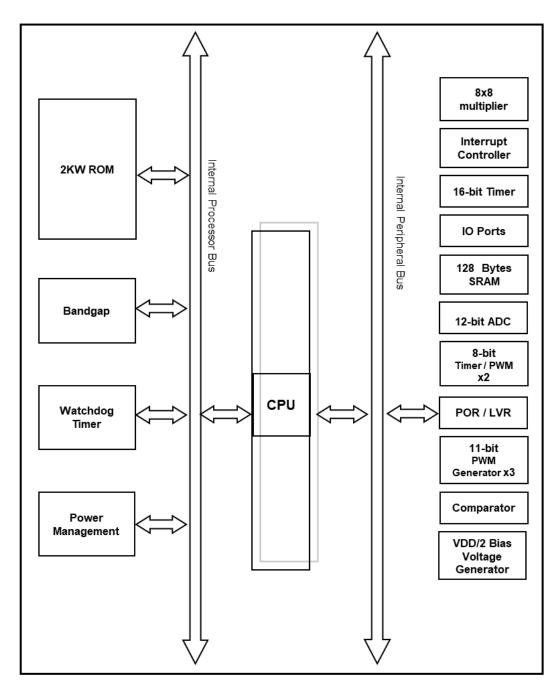
1.3. CPU Features

- One processing unit operating mode
- 87 powerful instructions
- Most instructions are 1T execution cycle
- Programmable stack pointer to provide adjustable stack level
- Direct and indirect addressing modes for data access. Data memories are available for use as an index pointer of Indirect addressing mode
- IO space and memory space are independent

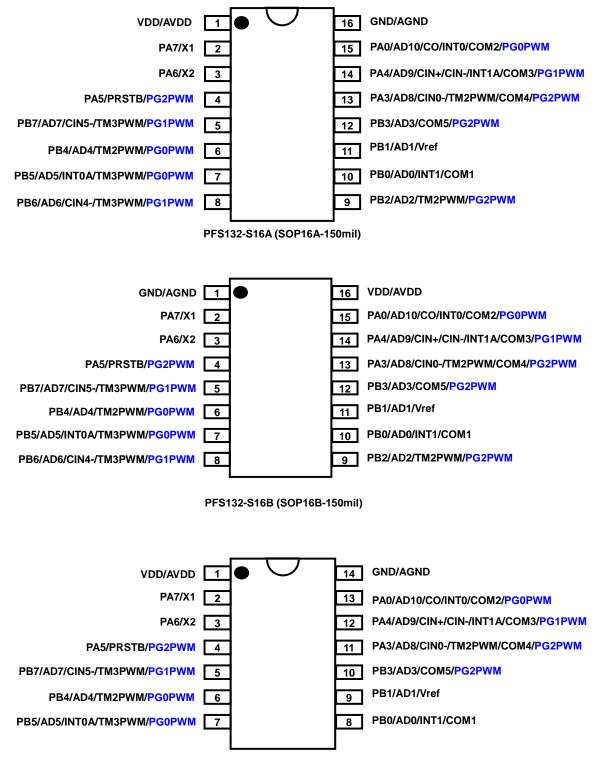
1.4. Ordering/ Package Information

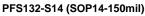
- PFS132-U06: SOT23-6 (60mil);
- PFS132-S08: SOP8 (150mil);
- PFS132-M10: MSOP10 (118mil);
- PFS132-4N10: DFN3*3-10P (0.5pitch);
- PFS132-S14: SOP14 (150mil)

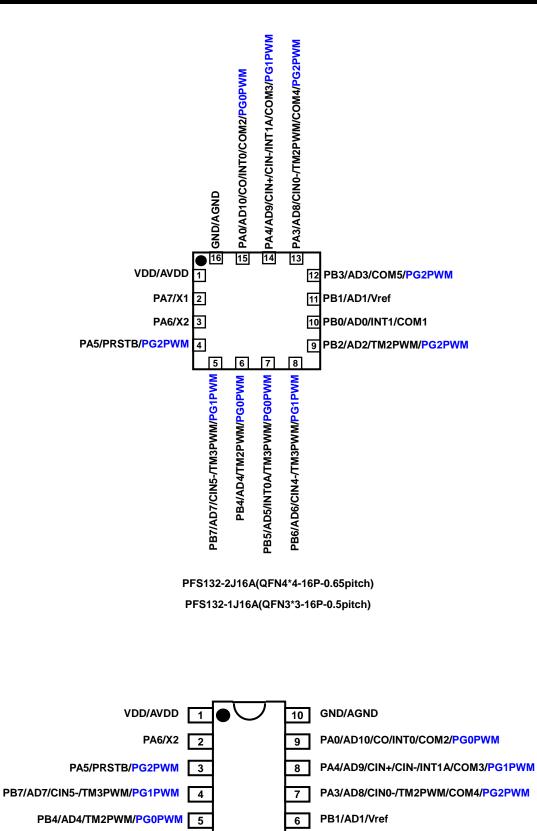
- PFS132-S16A: SOP16A (150mil);
- PFS132-S16B: SOP16B (150mil);
- PFS132-2J16A: QFN4*4-16P (0.65pitch);
- PFS132-1J16A: QFN3*3-16P (0.5pitch)


• Please refer to the official website file for package size information : "Package information "

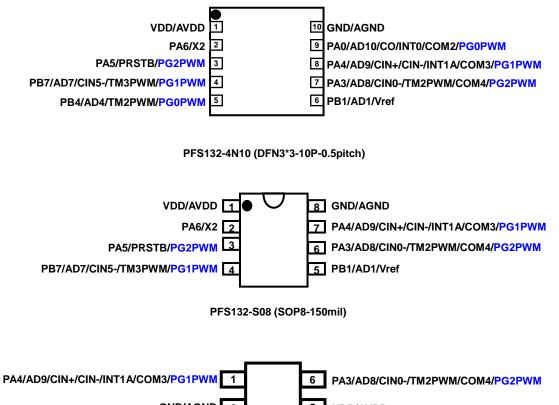
2. General Description and Block Diagram


The PFS132 family is an ADC-Type, fully static, MTP-based CMOS 8-bit microcontroller. It employs RISC architecture and all the instructions are executed in one cycle except that some instructions are two cycles that handle indirect memory access.


2KW bits MTP program memory and 128 bytes data SRAM are inside, one up to 12 channels 12-bit ADC is built inside the chip with one channel for internal bandgap reference voltage or 0.25*V_{DD}. PFS132 also provides six hardware timers: one is 16-bit timer, two are 8-bit timers with PWM generation, and three hardware 11-bit timers with PWM generation are also included. PFS132 also supports one hardware comparator and VDD/2 bias voltage generator for LCD display application.



3. Pin Assignment and Description



PFS132-M10 (MSOP10-118mil)

GND/AGND 2 PA6/X2 3 PA5/PRSTB/PG2PWM

PFS132-U06 (SOT23-6 60mil)

Pin Description

Pin Name	Pin Type & Buffer Type	Description
PA7 / X1	IO ST / CMOS	 The functions of this pin can be: (1) Bit 7 of port A. It can be configured as digital input or two-state output, with pull-high/pull-low resistor. (2) X1 when crystal oscillator is used. If this pin is used for crystal oscillator, bit 7 of <i>padier</i> register must be programmed "0" to avoid leakage current. This pin can be used to wake-up system during sleep mode; however, wake-up function is also disabled if bit 7 of <i>padier</i> register is "0".
PA6 / X2	IO ST / CMOS	 The functions of this pin can be: (1) Bit 6 of port A. It can be configured as digital input or two-state output, with pull-high/pull-low resistor. (2) X2 when crystal oscillator is used. If this pin is used for crystal oscillator, bit 6 of <i>padier</i> register must be programmed "0" to avoid leakage current. This pin can be used to wake-up system during sleep mode; however, wake-up function is also disabled if bit 6 of <i>padier</i> register is "0".

Pin Name	Pin Type & Buffer Type	Description
PA5 / PRSTB / PG2PWM	IO (OD) ST / CMOS	 The functions of this pin can be: (1) Bit 5 of port A. It can be configured as digital input or open-drain output, with pull-high/pull-low resistor. (2) Hardware reset. (3) Output of 11-bit PWM generator PWMG2. (ICE Does NOT support.) This pin can be used to wake-up system during sleep mode; however, wake-up function is also disabled if bit 5 of <i>padier</i> register is "0". <u>Please put 33Ω resistor in series to have high noise immunity when this pin is in input mode.</u>
PA4 / AD9 / CIN+ / CIN1- / INT1A / COM3/ PG1PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 4 of port A. It can be configured as digital input or two-state output, with pull-high/pull-low resistor by software independently (2) Channel 9 of ADC analog input (3) Plus input source of comparator (4) Minus input source 1 of comparator (5) External interrupt line 1A. It can be used as an external interrupt line 1. Both rising edge and falling edge are accepted to request interrupt service and configurable by register setting (6) COM3 to provide (1/2 V_{DD}) for LCD display (7) Output of 11-bit PWM generator PWMG1 When this pin is configured as analog input, please use bit 4 of register <i>padier</i> to disable the digital input to prevent current leakage. The bit 4 of <i>padier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PA3 / AD8 / CIN0- / TM2PWM / COM4/ PG2PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 3 of port A. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 8 of ADC analog input (3) Minus input source 0 of comparator (4) PWM output from Timer2 (5) COM4 to provide (1/2 V_{DD}) for LCD display (6) Output of 11-bit PWM generator PWMG2 When this pin is configured as analog input, please use bit 3 of register <i>padier</i> to disable the digital input to prevent current leakage. The bit 3 of <i>padier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.

Pin Name	Pin Type & Buffer Type	Description
PA0 / AD10 / CO / INT0 / COM2/ PG0PWM /	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 0 of port A. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 10 of ADC analog input (3) Output of comparator (4) COM2 to provide (1/2 V_{DD}) for LCD display (5) Output of 11-bit PWM generator PWMG0 (6) External interrupt line 0. It can be used as an external interrupt line 0. <u>Both rising edge and falling edge are accepted to request interrupt service and configurable by register setting</u> The bit 0 of <i>padier</i> register can be set to "0" to disable wake-up from power-down by toggling this pin.
PB7 / AD7 / CIN5- / TM3PWM/ PG1PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 7 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 7 of ADC analog input (3) Minus input source 5 of comparator (4) PWM output from Timer3 (5) Output of 11-bit PWM generator PWMG1 When this pin is configured as analog input, please use bit 7 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 7 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PB6 / AD6 / CIN4- / TM3PWM/ PG1PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 6 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 6 of ADC analog input (3) Minus input source 4 of comparator. (4) PWM output from Timer3 (5) Output of 11-bit PWM generator PWMG1 When this pin is configured as analog input, please use bit 6 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 6 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.

Pin Name	Pin Type & Buffer Type	Description
PB5 / AD5 / TM3PWM / PG0PWM / INT0A	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 5 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 5 of ADC analog input (3) PWM output from Timer3 (4) Output of 11-bit PWM generator PWMG0. (5) External interrupt line 0A. It can be used as an external interrupt line 0. <u>Both rising edge and falling edge are accepted to request interrupt service and configurable by register setting</u>. When this pin is configured as analog input, please use bit 5 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 5 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PB4 / AD4 / TM2PWM / PG0PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 4 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 4 of ADC analog input (3) PWM output from Timer2 (4) Output of 11-bit PWM generator PWMG0. When this pin is configured as analog input, please use bit 4 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 4 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PB3 / AD3 / COM5/ PG2PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 3 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 3 of ADC analog input (3) COM5 to provide (1/2 V_{DD}) for LCD display (4) Output of 11-bit PWM generator PWMG2 When this pin is configured as analog input, please use bit 3 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 3 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.

Pin Name	Pin Type & Buffer Type	Description
PB2 / AD2 / TM2PWM / PG2PWM	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 2 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 2 of ADC analog input (3) PWM output from Timer2 (4) Output of 11-bit PWM generator PWMG2 When this pin is configured as analog input, please use bit 2 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 2 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PB1 / AD1 / Vref	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 1 of port B. It can be configured as digital input or two-state output, with pull-high/pull-low resistor independently by software (2) Channel 1 of ADC analog input (3) External reference high voltage for ADC. When this pin is configured as analog input, please use bit 1 of register <i>pbdier</i> to disable the digital input to prevent current leakage. The bit 1 of <i>pbdier</i> register can be set to "0" to disable digital input; wake-up from power-down by toggling this pin is also disabled.
PB0 / AD0 / COM1 / INT1	IO ST / CMOS / Analog	 The functions of this pin can be: (1) Bit 0 of port B. It can be configured as analog input, digital input or two-state output, with pull-high/pull-low resistor independently by software. (2) Channel 0 of ADC analog input. (3) COM1 to provide (1/2 V_{DD}) for LCD display (4) External interrupt line 1. It can be used as an external interrupt line 1. Both rising edge and falling edge are accepted to request interrupt service and configurable by register setting. When this pin acts as analog input, please use bit 0 of register <i>pbdier</i> to disable the digital input to prevent current leakage. If bit 0 of <i>pbdier</i> register is set to "0" to disable digital input, wake-up from power-down by toggling this pin is also disabled.
VDD / AVDD	VDD / AVDD	VDD: digital positive power AVDD: Analog positive power VDD is the IC power supply while AVDD is the ADC power supply. AVDD and VDD are double bonding internally and they have the same external pin.
GND / AGND	GND / AGND	GND: digital negative power AGND: Analog negative power GND is the IC ground pin while AGND is the ADC ground pin. AGND and GND are double bonding internally and they have the same external pin.
Notes: IO: Input/Output; ST: Schmitt Trigger input; OD: Open Drain; Analog: Analog input pin CMOS: CMOS voltage level		

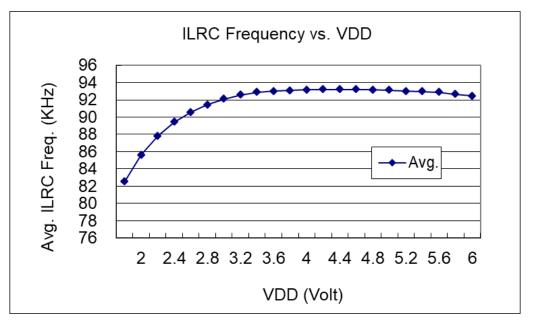
4. Device Characteristics

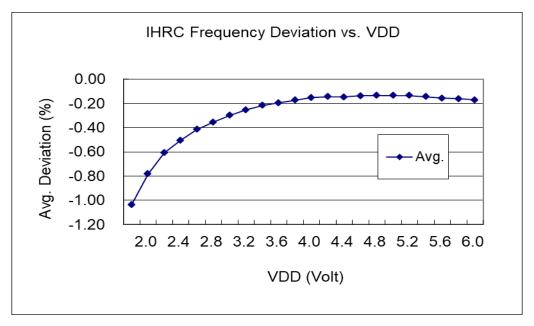
4.1. AC/DC Device Characteristics

All data are acquired under the conditions of, Ta = -40° C ~ 85° C V_{DD}=5.0V, f_{SYS} =2MHz unless noted.

Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25°C)
V _{DD}	Operating Voltage	2.2#	5.0	5.5	V	# Subject to LVR tolerance
LVR%	Low Voltage Reset Tolerance	-5		5	%	
	System clock (CLK)* =					
	IHRC/2	0		8M		$V_{DD} \ge 3.5V$
fsys	IHRC/4	0		4M	Hz	$V_{DD} \ge 2.5V$
	IHRC/8	0		2M		$V_{DD} \ge 2.2V$
	ILRC		93K			V _{DD} =5.0V
P _{cycle}	Program cycle	1000			cycles	
امع	Operating Current		0.6		mA	f _{SYS} =IHRC/16=1MIPS@5.0V
I _{OP}			90		uA	fsys=ILRC=93KHz@5.0V
IPD	Power Down Current		1	0.1 V _{DD}	uA	f _{SYS} = 0Hz, V _{DD} =5.0V
IPD	(by stopsys command)	topsys command) 0.6 er Save Current 4		uA	f _{SYS} = 0Hz, V _{DD} =3.3V	
I _{PS}	Power Save Current		Λ		uA	V _{DD} =5.0V; f _{SYS} = ILRC
122	(by stopexe command)		4		uл	Only ILRC module is enabled.
VIL	Input low voltage for IO lines	0		0.1 Vdd	V	
VIH	Input high voltage for IO lines	$0.7 V_{DD}$		V _{DD}	V	
	IO lines sink current					
	PA0, PA3, PA4,PB2,PB5,PB6		22			V _{DD} =5.0V, V _{OL} =0.5V
IOL	PB4, PB7 (Strong)		38		mA	
	PB4, PB7 (Normal)		20			
	Others IO		13			
	IO lines drive current					
	PA5		0			
Іон	PB4, PB7 (Strong)		-30		mA	V _{DD} =5.0V, V _{OH} =4.5V
	PB4, PB7 (Normal)		-13			
	Others IO		-12			
VIN	Input voltage	-0.3		V _{DD} +0.3	V	
IINJ (PIN)	Injected current on pin			1	mA	V _{DD} +0.3≧V _{IN} ≧ -0.3
Rрн	Pull-high Resistance		67			V _{DD} =5.0V
			68		KΩ	V _{DD} =3.0V
			69			V _{DD} =2.0V
Rpl	Pull-low Resistance		64			V _{DD} =5.0V
			66		KΩ	V _{DD} =3.0V
			67			V _{DD} =2.0V
						V _{DD} =2.2V ~ 5.5V
VBG	Bandgap Reference Voltage	1.145*	1.20*	1.255*	V	-40°C <ta<85°c*< td=""></ta<85°c*<>

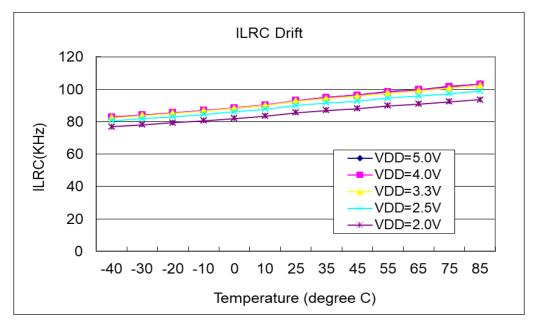
Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25°C)
		15.76*	16*	16.24*		25°C, V _{DD} =2.2V~5.5V
fihrc	Frequency of IHRC after calibration *	15.20*	16*	16.80*	16.80* MHz	V _{DD} =2.2V~5.5V, -40°C <ta<85°c*< td=""></ta<85°c*<>
t _{INT}	Interrupt pulse width	30			ns	V _{DD} = 5.0V
VADC	Supply voltage for workable ADC	2.2		Vdd	V	
VAD	AD Input Voltage	0		Vdd	V	
ADrs	ADC resolution			12	bit	
ADcs	ADC current consumption		0.9 0.8		mA	@5V @3V
ADclk	ADC clock period		2		us	2.2V ~ 5.5V
t adconv	ADC conversion time (T _{ADCLK} is the period of the selected AD conversion clock)		16		TADCLK	12-bit resolution
AD DNL	ADC Differential NonLinearity		±2*		LSB	
AD INL	ADC Integral NonLinearity		±4*		LSB	
ADos	ADC offset*		2		mV	@ V _{DD} =3V
Vrefh	ADC reference high voltage 4V 3V 2V	3.90 2.93 1.95	4 3 2	4.10 3.07 2.05		@ V _{DD} =5V, 25 ℃
Vdr	RAM data retention voltage*	1.5			V	in stop mode
			8k		Tilrc	misc[1:0]=00 (default)
			16k			misc[1:0]=01
twdt	Watchdog timeout period		64k			misc[1:0]=10
			256k			misc[1:0]=11
	Wake-up time period for fast wake-up	45 Tilrc		Where T_{ILRC} is the time		
twup	Wake-up time period for normal wake-up		3000		TIERC	period of ILRC
	System boot-up period from power-on for Normal boot-up		32		ms	Vdd =5V
t _{SBP}	System boot-up period from power-on for Fast boot-up		550		us	Vdd =5V
t _{RST}	External reset pulse width	120			us	@ V _{DD} =5V
CPos	Comparator offset*	-	±10	±20	mV	
CPcm	Comparator input common mode*	0		V _{DD} -1.5	V	
CPspt	Comparator response time**		100	500	ns	Both Rising and Falling
CPmc	Stable time to change comparator mode		2.5	7.5	us	
CPcs	Comparator current consumption		28		uA	V _{DD} = 5.0V


*These parameters are for design reference, not tested for each chip.

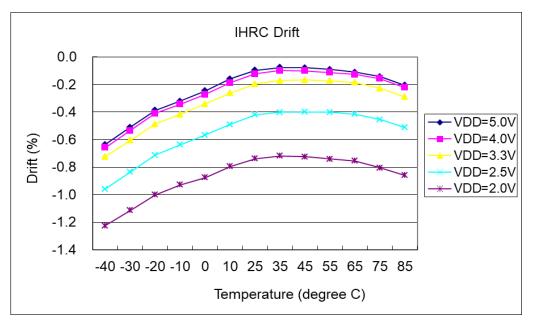

4.2. Absolute Maximum Ratings

- Input Voltage -0.3V ~ V_{DD} + 0.3V
- Operating Temperature -40°C ~ 85°C
- Junction Temperature 150°C
- Storage Temperature -50°C ~ 125°C

4.3. Typical ILRC frequency vs. VDD and temperature

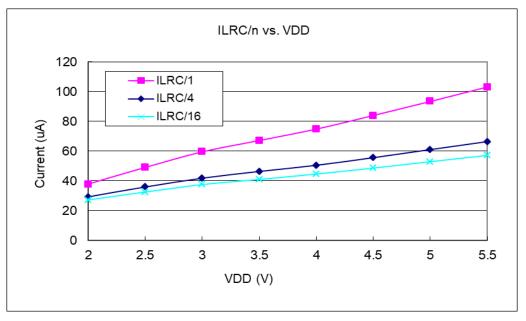


4.4. Typical IHRC frequency deviation vs. VDD(calibrated to 16MHz)



4.5. Typical ILRC Frequency vs. Temperature

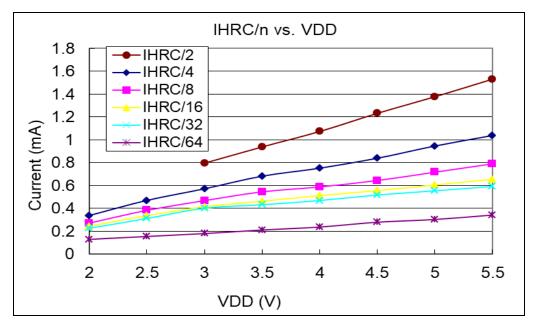
4.6. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)



4.7. Typical operating current vs. VDD @ system clock = ILRC/n

Conditions:

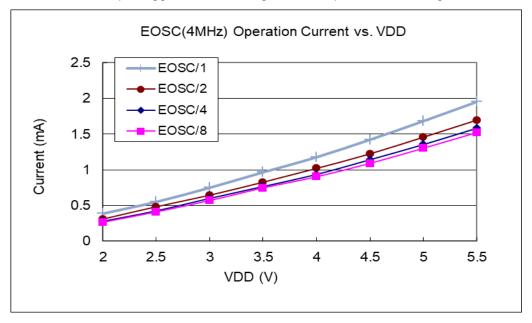
ON: ILRC, Bandgap, LVR; **OFF**: IHRC, EOSC, T16, TM2, TM3, ADC modules;


IO: PA0:0.5Hz output toggle and no loading, others: input and no floating

4.8. Typical operating current vs. VDD @ system clock = IHRC/n

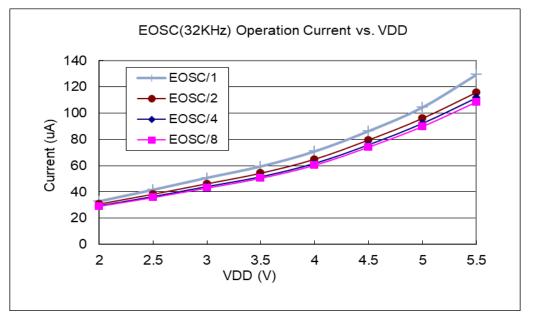
Conditions:

ON: Bandgap, LVR, IHRC; OFF: ILRC, EOSC, LVR, T16, TM2, TM3, ADC modules;IO: PA0:0.5Hz output toggle and no loading, others: input and no floating



4.9. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n

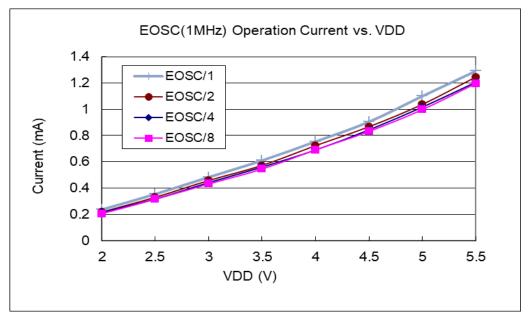
Conditions:


ON: EOSC, MISC.6 = 1, Bandgap, LVR; **OFF**: IHRC, ILRC, T16, TM2, TM3, ADC modules; **IO**: PA0:0.5Hz output toggle and no loading, **others**: input and no floating

4.10. Typical operating current vs. VDD @ system clock = 32KHz EOSC / n

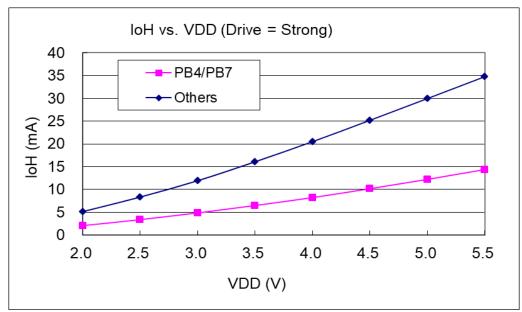
Conditions:

ON: EOSC, MISC.6 = 1, Bandgap, LVR; **OFF**: IHRC, ILRC, T16, TM2, TM3, ADC modules; **IO**: PA0:0.5Hz output toggle and no loading, **others**: input and no floating

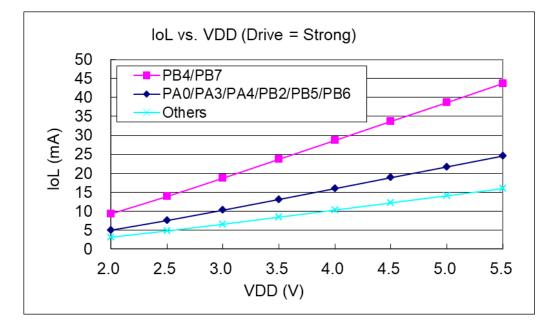


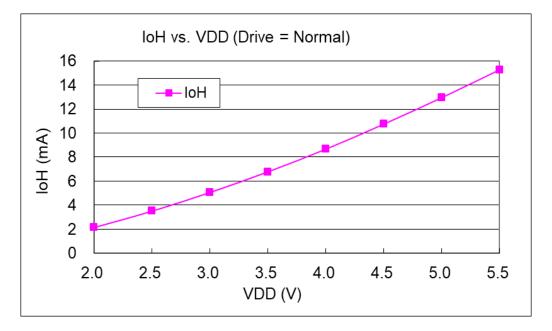
4.11. Typical operating current vs. VDD @ system clock = 1MHz EOSC / n

Conditions:

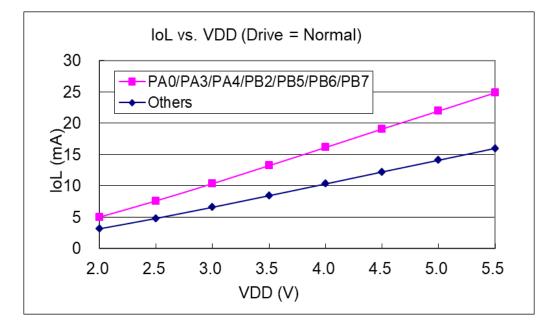

ON: EOSC, MISC.6 = 1, Bandgap, LVR; **OFF**: IHRC, ILRC, T16, TM2, TM3, ADC modules;

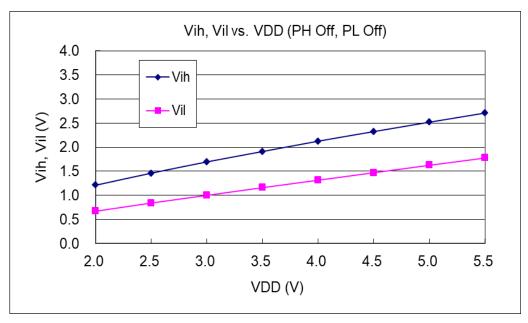
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating

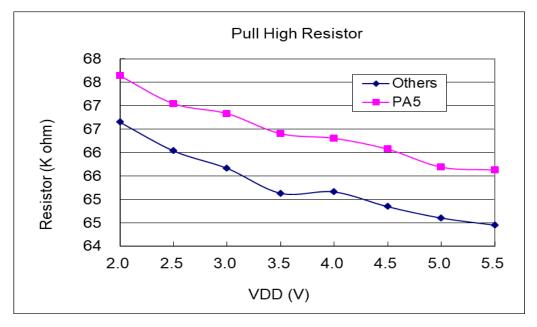



4.12. Typical IO driving current (IOH) and sink current (IOL)

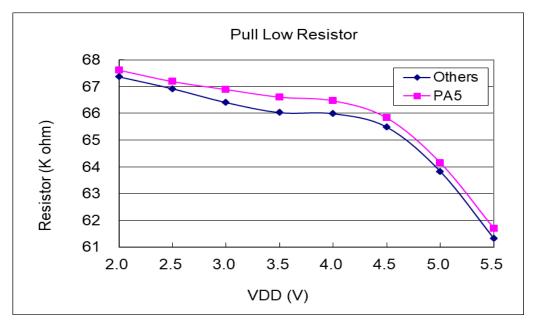
(VOH=0.9*VDD, VOL=0.1*VDD)



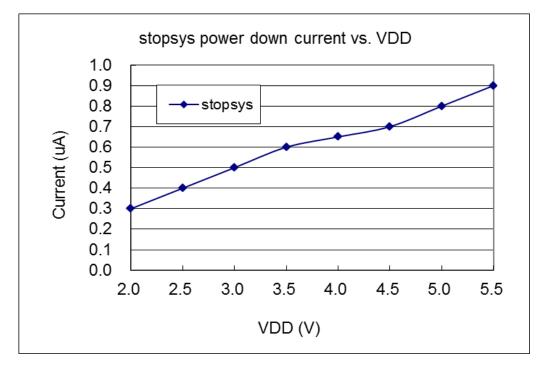


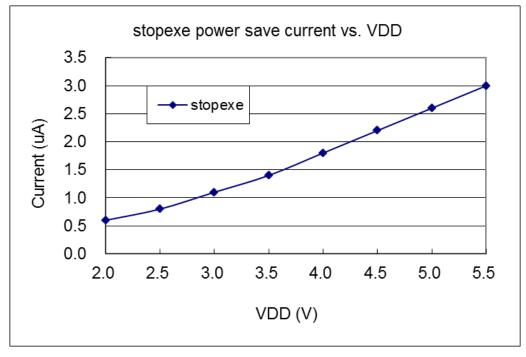


4.13. Typical IO input high/low threshold voltage (V_{IH}/V_{IL})



4.14. Typical resistance of IO pull high device

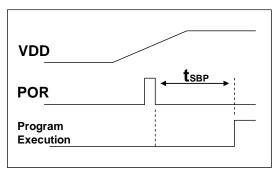



4.15. Typical resistance of IO pull low device

4.16. Typical power down current (IPD) and power save current (IPS)

5. Functional Description

5.1. Program Memory - MTP

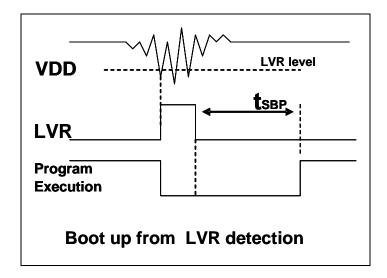

The MTP (Multiple Time Programmable) program memory is used to store the program instructions to be executed. The MTP program memory may contains the data, tables and interrupt entry. After reset, the program will start from the initial address 0x000 which is GOTO FPPA0 instruction usually. The interrupt entry is 0x10 if used, the last 16 addresses are reserved for system using, like checksum, serial number, etc. The MTP program memory for PFS132 is a 2Kx14 bit that is partitioned as Table 1. The MTP memory from address '0x7E0 to 0x7FF is for system using, address space from0x001 to 0x00F and from 0x011 to 0x7DF are user program spaces.

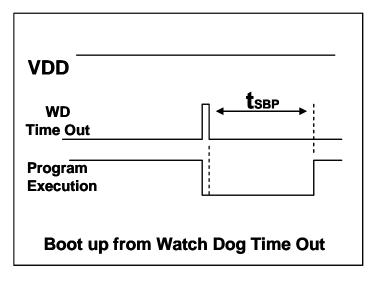
Function
GOTO FPPA0 instruction
User program
•
User program
Interrupt entry address
User program
•
User program
System Using
•
System Using

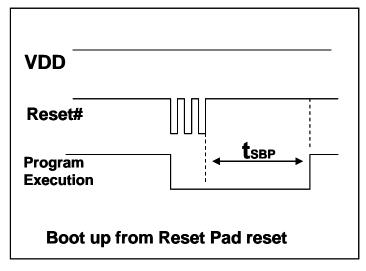
Table 1: Program Memory Organization

5.2. Boot Procedure

POR (Power-On-Reset) is used to reset PFS132 when power up. The boot up time can be optional fast or normal. Time for fast boot-up is about 45 ILRC clock cycles whereas 3000 ILRC clock cycles for normal boot-up. Customer must ensure the stability of supply voltage after power up no matter which option is chosen, the power up sequence is shown in the Fig. 1 and t_{SBP} is the boot-up time.




Boot up from Power-On Reset



5.2.1. Timing charts for reset conditions

5.3. Data Memory - SRAM

The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is also served as data pointer of indirect access method and the stack memory.

The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register; the depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory fully flexible and can be dynamically adjusted by the user.

For indirect memory access mechanism, the data memory is used as the data pointer to address the data byte. All the data memory could be the data pointer; it's quite flexible and useful to do the indirect memory access. Since the data width is 8-bit, all the 128 bytes data memory of PFS132 can be accessed by indirect access mechanism.

5.4. Oscillator and clock

There are three oscillator circuits provided by PFS132: external crystal oscillator (EOSC), internal high RC oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or disabled by registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three oscillators as system clock source and use *clkmd* register to target the desired frequency as system clock to meet different applications.

Oscillator Module	Enable/Disable
EOSC	eoscr.7
IHRC	clkmd.4
ILRC	clkmd.2
	Cikiliu.2

Table 2: Three oscillation circuits

5.4.1. Internal High RC oscillator and Internal Low RC oscillator

After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to eliminate process variation by *ihrcr* register; normally it is calibrated to 16MHz. Please refer to the measurement chart for IHRC frequency verse V_{DD} and IHRC frequency verse temperature.

The frequency of ILRC will vary by process, supply voltage and temperature, please refer to DC specification and do not use for accurate timing application.

5.4.2. Chip calibration

The IHRC frequency and bandgap reference voltage may be different chip by chip due to manufacturing variation, PFS132 provide the IHRC frequency calibration to eliminate this variation, and this function can be selected when compiling user's program and the command will be inserted into user's program automatically. The calibration command is shown as below:

.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, V_{DD}=(p3)V; Where, p1=2, 4, 8, 16, 32; In order to provide different system clock. p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one. p3=2.5 ~ 5.5; In order to calibrate the chip under different supply voltage.

5.4.3. IHRC Frequency Calibration and System Clock

During compiling the user program, the options for IHRC calibration and system clock are shown as Table 3:

SYSCLK	CLKMD	IHRCR	Description
○ Set IHRC / 2	= 34h (IHRC / 2)	Calibrated	IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)
 Set IHRC / 4 	= 14h (IHRC / 4)	Calibrated	IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)
 Set IHRC / 8 	= 3Ch (IHRC / 8)	Calibrated	IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)
 Set IHRC / 16 	= 1Ch (IHRC / 16)	Calibrated	IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)
o Set IHRC / 32	= 7Ch (IHRC / 32)	Calibrated	IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)
○ Set ILRC	= E4h (ILRC / 1)	Calibrated	IHRC calibrated to 16MHz, CLK=ILRC
○ Disable	No change	No Change	IHRC not calibrated, CLK not changed

Table 3: Options for IHRC Frequency Calibration

Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency whenever starting the system. The program code for IHRC frequency calibration is executed only one time that occurs in writing the codes into MTP memory; after then, it will not be executed again. If the different option for IHRC calibration is chosen, the system status is also different after boot. The following shows the status of PFS132 for different option:

(1) .ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V

After boot up, CLKMD = 0x34:

- ♦ IHRC frequency is calibrated to 16MHz@V_{DD}=5V and IHRC module is enabled
- ♦ System CLK = IHRC/2 = 8MHz
- Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode

(2) .ADJUST_IC SYSCLK=IHRC/4, IHRC=16MHz, V_{DD}=3.3V

After boot up, CLKMD = 0x14:

- IHRC frequency is calibrated to 16MHz@V_{DD}=3.3V and IHRC module is enabled
- ♦ System CLK = IHRC/4 = 4MHz
- Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode

(3) .ADJUST_IC SYSCLK=IHRC/8, IHRC=16MHz, V_{DD}=2.5V

After boot up, CLKMD = 0x3C:

- ♦ IHRC frequency is calibrated to 16MHz@V_{DD}=2.5V and IHRC module is enabled
- ♦ System CLK = IHRC/8 = 2MHz
- Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode

(4) .ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, V_{DD}=2.5V

After boot up, CLKMD = 0x1C:

- IHRC frequency is calibrated to 16MHz@V_{DD}=2.5V and IHRC module is enabled
- ♦ System CLK = IHRC/16 = 1MHz
- Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode

(5) .ADJUST_IC SYSCLK=IHRC/32, IHRC=16MHz, V_{DD}=5V

After boot up, CLKMD = 0x7C:

- IHRC frequency is calibrated to 16MHz@V_{DD}=5V and IHRC module is enabled
- ♦ System CLK = IHRC/32 = 500KHz
- Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode

(6) .ADJUST_IC SYSCLK=ILRC, IHRC=16MHz, VDD=5V

After boot up, CLKMD = 0XE4:

- ♦ IHRC frequency is calibrated to 16MHz@V_{DD}=5V and IHRC module is disabled
- System CLK = ILRC
- Watchdog timer is enabled, ILRC is enabled, PA5 is input mode

(7) .ADJUST_IC DISABLE

After boot up, CLKMD is not changed (Do nothing):

- IHRC is not calibrated and IHRC module is to be enabled or disabled by Boot-up Time.
- System CLK = ILRC or IHRC/64 (by Boot-up_Time)
- Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode.

5.4.4. External Crystal Oscillator

If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig.2 shows the hardware connection under this application; the range of operating frequency of crystal oscillator can be from 32 KHz to 4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.

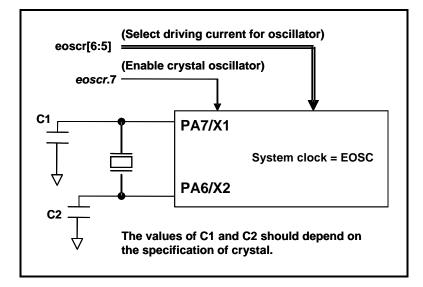


Fig.2: Connection of crystal oscillator

Besides crystal, external capacitor and options of PFS132 should be fine tuned in *eoscr* (0x0a) register to have good sinusoidal waveform. The *eoscr*.7 is used to enable crystal oscillator module, *eoscr*.6 and *eoscr*.5 are used to set the different driving current to meet the requirement of different frequency of crystal oscillator:

- eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator
- eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator
- eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator

Table 4 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up time under its corresponding conditions is also shown. Since the crystal or resonator had its own characteristic, the capacitors and start-up time may be slightly different for different type of crystal or resonator, please refer to its specification for proper values of C1 and C2.

Frequency	C1	C2	Measured Start-up time	Conditions
4MHz	4.7pF	4.7pF	6ms	(eoscr[6:5]=11, misc.6=0)
1MHz	10pF	10pF	11ms	(eoscr[6:5]=10, misc.6=0)
32KHz	22pF	22pF	450ms	(eoscr[6:5]=01, misc.6=0)

Table 4: Recommend values of C1 and C2 for crystal and resonator oscillators

When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the stable time of oscillator will depend on frequency, crystal type, external capacitor and supply voltage. Before switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference program is shown as below:

void {	FPPA0 (void)						
L	. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V						
	\$ EOSCR Enable, 4MHz;	// EOSCR = 0b111_00000;					
	\$ T16M EOSC, /1, BIT13;	// while T16.Bit13 0 => 1, Intrq.T16 => 1					
		// suppose crystal EOSC is stable					
	WORD count = 0;						
	stt16 count;						
	Intrq.T16 = 0;						
	while (! Intrq.T16) NULL;	// count from 0x0000 to 0x2000, then trigger INTRQ.T16					
	clkmd= 0xb4;	// switch system clock to EOSC;					
	clkmd.4 = 0;	//disable IHRC					

Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in order to avoid unexpected wakeup event.

5.4.5. System Clock and LVR level

The clock source of system clock comes from EOSC, IHRC and ILRC, the hardware diagram of system clock in the PFS132 is shown as Fig.3.

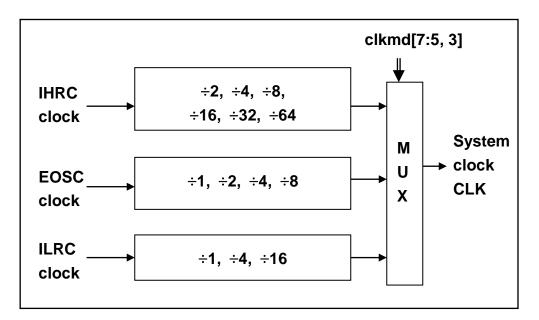


Fig. 3: Options of System Clock

User can choose different operating system clock depends on its requirement; the selected operating system clock should be combined with supply voltage and LVR level to make system stable. The LVR level will be selected during compilation, and the lowest LVR levels can be chosen for different operating frequencies. Please refer to Section 4.1.

5.4.6. System Clock Switching

After IHRC calibration, user may want to switch system clock to a new frequency or may switch system clock at any time to optimize the system performance and power consumption. Basically, the system clock of PFS132 can be switched among IHRC, ILRC and EOSC by setting the *clkmd* register at any time; system clock will be the new one after writing to *clkmd* register immediately. Please notice that the original clock module can NOT be turned off at the same time as writing command to *clkmd* register. The examples are shown as below and more information about clock switching, please refer to the "Help" -> "Application Note" -> "IC Introduction" -> "Register Introduction" -> CLKMD".

Case 1: Switching system clock from ILRC to IHRC/2

			//	system clock is ILRC
CLKMD.4	=	1;	//	turn on IHRC first to improve anti-interference ability
CLKMD	=	0x34;	//	switch to IHRC/2, ILRC CAN NOT be disabled here
// CLKMD.2	=	0;	//	if need, ILRC CAN be disabled at this time

Case 2: Switching system clock from ILRC to EOSC

			//	system clock is ILRC
CLKMD	=	0xA6 ;	//	switch to IHRC, ILRC CAN NOT be disabled here
CLKMD.2	=	0;	//	ILRC CAN be disabled at this time

Case 3: Switching system clock from IHRC/2 to ILRC

			//	system clock is IHRC/2
CLKMD	=	0xF4;	//	switch to ILRC, IHRC CAN NOT be disabled here
CLKMD.4	=	0;	//	IHRC CAN be disabled at this time

Case 4: Switching system clock from IHRC/2 to EOSC

			//	system clock is IHRC/2
CLKMD	=	0XB0;	//	switch to EOSC, IHRC CAN NOT be disabled here
CLKMD.	.4 =	0;	//	IHRC CAN be disabled at this time
Case 5: Switch	ing system cloc	k from IHRC/	2 to IHR	C/4
			//	system clock is IHRC/2, ILRC is enabled here
CLKMD	=	0X14;	//	switch to IHRC/4
Case 6: System	n may hang if it	is to switch c	lock and	turn off original oscillator at the same time
			//	system clock is ILRC
CLKMD	=	0x30;	//	CAN NOT switch clock from ILRC to IHRC/2 and

ID = 0x30 ; // CAN NOT switch clock from ILRC to IHRC/2 and turn off ILRC oscillator at the same time

5.5. Comparator

One hardware comparator is built inside the PFS132; Fig.4 shows its hardware diagram. It can compare signals between two pins or with either internal reference voltage V_{internal R} or internal bandgap reference voltage. The two signals to be compared, one is the plus input and the other one is the minus input. For the minus input of comparator can be PA3, PA4, Internal bandgap 1.20 volt, PB6, PB7 or V_{internal R} selected by bit [3:1] of gpcc register, and the plus input of comparator can be PA4 or V_{internal R} selected by bit 0 of gpcc register.

The comparator result can be selected through gpcs.7 to forcibly output to PA0 whatever input or output state. It can be a direct output or sampled by Timer2 clock (TM2_CLK) which comes from Timer2 module. The output polarity can be also inverted by setting gpcc.4 register, the comparator output can be used to request interrupt service or read through gpcc.6.

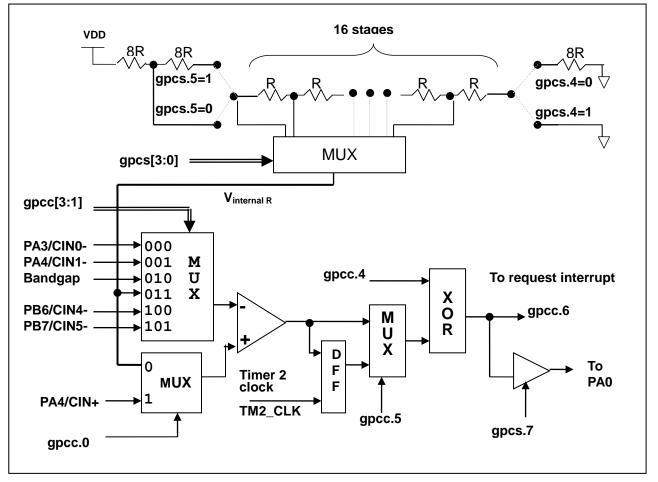


Fig.4: Hardware diagram of comparator

5.5.1. Internal reference voltage (Vinternal R)

The internal reference voltage $V_{internal R}$ is built by series resistance to provide different level of reference voltage, bit 4 and bit 5 of *gpcs* register are used to select the maximum and minimum values of $V_{internal R}$ and bit [3:0] of *gpcs* register are used to select one of the voltage level which is deivided-by-16 from the defined maximum level to minimum level. Fig.5 to Fig.8 shows four conditions to have different reference voltage $V_{internal R}$. By setting the *gpcs* register, the internal reference voltage $V_{internal R}$ can be ranged from (1/32)* V_{DD} to (3/4)* V_{DD} .

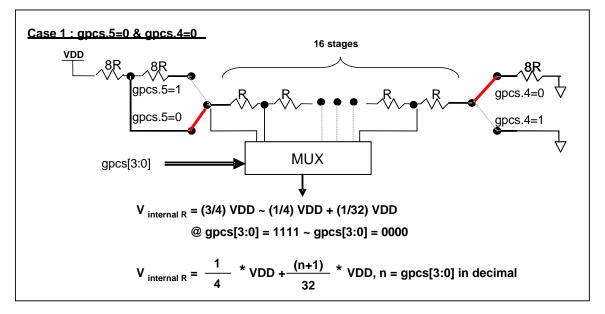


Fig.5: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0

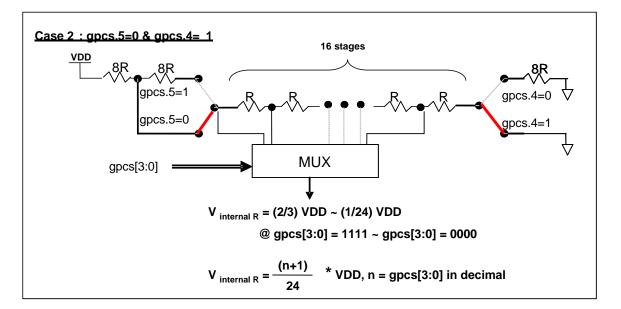


Fig.6: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1

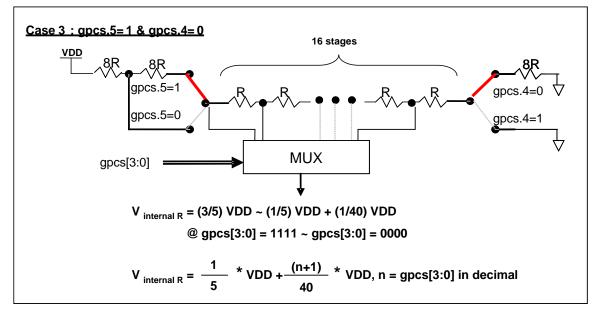


Fig.7: V_{internal R} hardware connection if gpcs.5=1 and gpcs.4=0

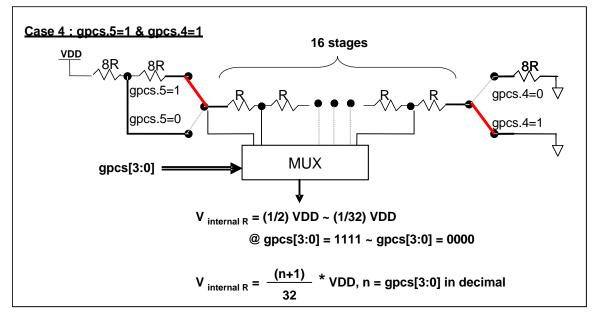


Fig.8: V_{internal R} hardware connection if gpcs.5=1 and gpcs.4=1

5.5.2. Using the comparator

<u>Case 1:</u>

Choosing PA3 as minus input and V_{internal R} with $(18/32)^*V_{DD}$ voltage level as plus input. V_{internal R} is configured as he above Figure "gpcs [5:4] = 2b'00" and gpcs [3:0] = 4b'1001 (n=9) to have V_{internal R} = $(1/4)^*V_{DD} + [(9+1)/32]^*V_{DD} = [(9+9)/32]^*V_{DD} = (18/32)^*V_{DD}$.

```
      gpcs
      = 0b0_0_00_1001;
      // Vinternal R = V_DD*(18/32)

      gpcc
      = 0b1_0_0_000_0;
      // enable comp, - input: PA3, + input: Vinternal R

      padier
      = 0bxxxx_0_xxx;
      // disable PA3 digital input to prevent leakage current
```

or

\$ GPCS V_{DD}*18/32; \$ GPCC Enable, N_PA3, P_R; // - input: N_xx, + input: P_R(V_{internal R}) PADIER = 0bxxxx_0_xxx;

<u>Case 2:</u>

Choosing V_{internal R} as minus input with $(22/40)^*V_{DD}$ voltage level and PA4 as plus input, the comparator result will be inversed and then output to PA0. V_{internal R} is configured as the above Figure "gpcs[5:4] = 2b'10" and gpcs [3:0] = 4b'1101 (n=13) to have V_{internal R} = $(1/5)^*V_{DD} + [(13+1)/40]^*V_{DD} = [(13+9)/40]^*V_{DD} = (22/40)^*V_{DD}$.

gpcs	=0b1_0_10_1101;	// output to PA0, $V_{internal R} = V_{DD} * (22/40)$
gpcc	=0b1_0_0_1_011_1;	// Inverse output, - input: V _{internal R} , + input: PA4
padie	r = 0bxxx_0_xxxx;	// disable PA4 digital input to prevent leakage current

or

\$ GPCS Output, V_{DD}*22/40; \$ GPCC Enable, Inverse, N_R, P_PA4; // - input: N_R(V_{internal R}), + input: P_xx PADIER = 0bxxx_0_xxxx;

Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in 6S-M-001 ICE. Though the IC is fine, be careful to avoid this error during emulation.

5.5.3. Using the comparator and bandgap 1.20V

The internal bandgap module can provide 1.20 volt, it can measure the external supply voltage level. The bandgap 1.20 volt is selected as minus input of comparator and V_{internal R} is selected as plus input, the supply voltage of V_{internal R} is V_{DD}, the V_{DD} voltage level can be detected by adjusting the voltage level of V_{internal R} to compare with bandgap. If N (gpcs[3:0] in decimal) is the number to let V_{internal R} closest to bandgap 1.20 volt, the supply voltage V_{DD} can be calculated by using the following equations:

For using Case 1: $V_{DD} = [32 / (N+9)] * 1.20$ volt ; For using Case 2: $V_{DD} = [24 / (N+1)] * 1.20$ volt ; For using Case 3: $V_{DD} = [40 / (N+9)] * 1.20$ volt ; For using Case 4: $V_{DD} = [32 / (N+1)] * 1.20$ volt ;

<u>Case 1:</u>

\$ GPCS V _{DD} *12/40;	//	4.0V * 12/40 = 1.2V
\$ GPCC Enable, BANDGAP, P_R,	. //	- input: BANDGAP, + input: P_R(V _{internal R})
if (GPC_Out)	//	or GPCC.6
{	//	when $V_{DD} > 4V$
}		
else		
{	//	when V _{DD} < 4V
}		

5.6. VDD/2 LCD Bias Voltage Generator

There are five pins, PA0, PA3, PA4, PB0 and PB3, can be selected as the COM ports for LCD applications. By setting misc.4=1, these five COM ports are able to output VDD, VDD/2, GND three levels voltage.

A COM port can still output VDD & GND by selecting 1 or 0 for pa.x and *pb.x* in output mode (pac.x/*pbc.x*=1) like a normal IO port. Additionally, a COM port can also output VDD/2 by switching it to input mode (pac.x/*pbc.x*=0). However, keep in mind to turn off the pull-high resistor paph.x/*pbph.x* and padier.x/*pbdier.x* to prevent the output voltage level from disturbing. Fig. 9 shows how to use this function.

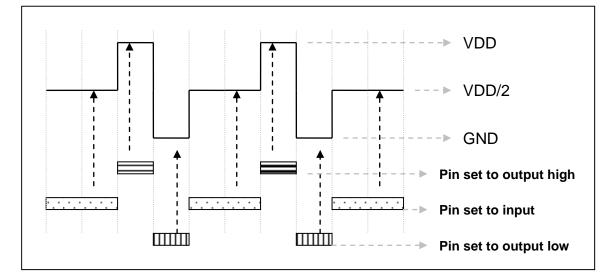


Fig. 9: Using VDD/2 bias voltage generator

5.7. 16-bit Timer (Timer16)

A 16-bit hardware timer (Timer16) is implemented in the PFS132, the clock sources of Timer16 may come from system clock (CLK), clock of external crystal oscillator (EOSC), internal high RC oscillator (IHRC), internal low RC oscillator (ILRC), PA4 and PA0, a multiplex is used to select clock output for the clock source. Before sending clock to the counter16, a pre-scaling logic with divided-by-1, 4, 16, and 64 is used for wide range counting.

The 16-bit counter performs up-counting operation only, the counter initial values can be stored from memory by *stt16* instruction and the counting values can be loaded to memory by *ldt16* instruction. A selector is used to select the interrupt condition of Timer16, whenever overflow occurs, the Timer16 interrupt can be triggered. The hardware diagram of Timer16 is shown as Fig.10. The interrupt source of Timer16 comes from one of bit 8 to 15 of 16-bit counter, and the interrupt type can be rising edge trigger or falling edge trigger which is specified in the bit 5 of *integs* register (IO address 0x0C).

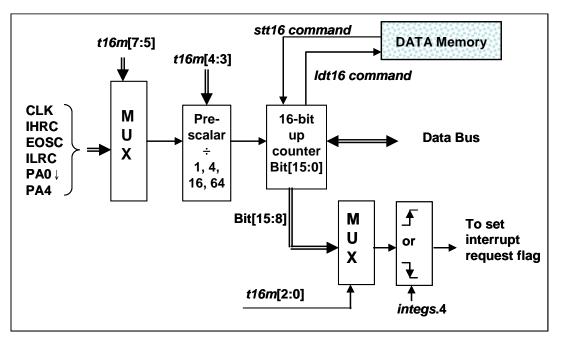


Fig.10: Hardware diagram of Timer16

When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three parameters to define the Timer16; 1st parameter is used to define the clock source of Timer16, 2nd parameter is used to define the pre-scalar and the last one is to define the interrupt source. The detail description is shown as below:

T16M	IO_RW	0x06	
\$	7~5: STOP, SYSCLK,	X, PA4_F, IHRC, EOSC, ILRC, PA0_F	// 1 st par.
\$	4~3:/1, /4, /16, /64		// 2 nd par.
\$	2~0: BIT8, BIT9, BIT1	0, BIT11, BIT12, BIT13, BIT14, BIT15	// 3 rd par.

User can define the parameters of T16M based on system requirement, some examples are shown below and more examples please refer to "Help \rightarrow Application Note \rightarrow IC Introduction \rightarrow Register Introduction \rightarrow T16M" in IDE utility.

\$ T16M SYSCLK, /64, BIT15;

// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1
// if using System Clock = IHRC / 2 = 8 MHz
// SYSCLK/64 = 8 MHz/64 = 125KHz, about every 512 mS to generate INTRQ.2=1

\$ T16M EOSC, /1, BIT13;

// choose (EOSC/1) as clock source, every 2^14 clocks to generate INTRQ.2=1 // if EOSC=32768 Hz, 32768 Hz/(2^14) = 2Hz, every 0.5S to generate INTRQ.2=1

\$ T16M PA0_F, /1, BIT8;

// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1 // receiving every 512 times PA0 to generate INTRQ.2=1

\$ T16M STOP;

// stop Timer16 counting

If Timer16 is operated at free running, the frequency of interrupt can be described as below:

$F_{INTRQ_T16M} = F_{clock \ source} \div P \div 2^{n+1}$

Where, F is the frequency of selected clock source to Timer16;

P is the selection of t16m [4:3]; (1, 4, 16, 64)

N is the nth bit selected to request interrupt service, for example: n=10 if bit 10 is selected.

5.8. 8-bit Timer (Timer2/Timer3) with PWM generation

Two 8-bit hardware timers (Timer2 and Timer3) with PWM generation are implemented in the PFS132. The following descriptions thereinafter are for Timer2 only. It is because Timer3 have same structure with Timer2. Please refer to Fig.11 shown the hardware diagram of Timer2, the clock sources of Timer2 may come from system clock, internal high RC oscillator (IHRC), internal low RC oscillator (ILRC), external crystal oscillator (EOSC), PA0, PB0,PA4 and comparator. Bit [7:4] of register tm2c are used to select the clock of Timer2. If IHRC is selected for Timer2 clock source, the clock sent to Timer2 will keep running when using ICE in halt state. According to the setting of register tm2c[3:2], Timer2 output can be selectively output to PB2, PA3 or PB4(Timer3 count output can be selected as PB5, PB6 or PB7). At this point, regardless of whether PX.x is the input or output state, Timer2(or Timer3) signal will be forced to output. A clock pre-scaling module is provided with divided-by- 1, 4, 16, and 64 options, controlled by bit [6:5] of tm2s register; one scaling module with divided-by-1~31 is also provided and controlled by bit [4:0] of tm2s register. In conjunction of pre-scaling function, the frequency of Timer2 clock (TM2_CLK) can be wide range and flexible.

The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound register, the upper bound register is used to define the period of timer or duty of PWM. There are two operating modes for Timer2: period mode and PWM mode; period mode is used to generate periodical output waveform or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit to 8-bit PWM resolution, Fig.12 shows the timing diagram of Timer2 for both period mode and PWM mode.

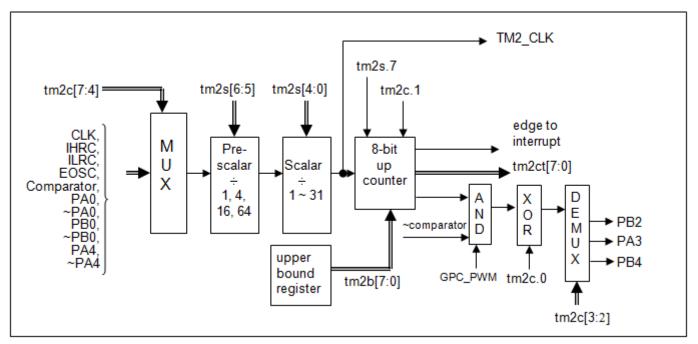


Fig.11: Timer2 hardware diagram

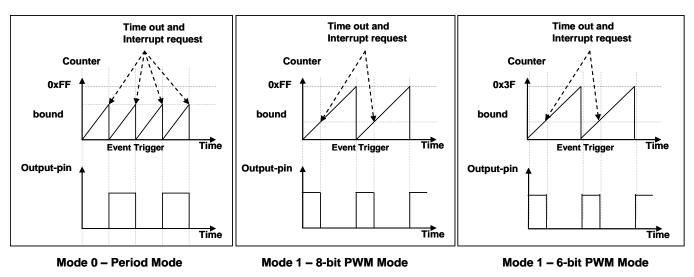


Fig.12: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)

A Code Option GPC_PWM is for the applications which need the generated PWM waveform to be controlled by the comparator result. If the Code Option GPC_PWM is selected, the PWM output stops while the comparator output is 1 and then the PWM output turns on while the comparator output goes back to 0, as shown in Fig. 13.

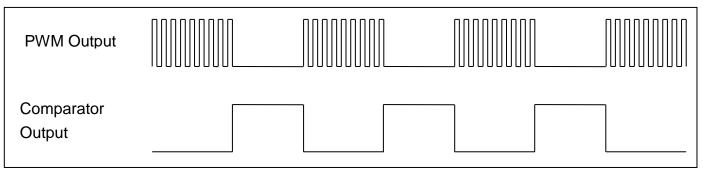


Fig.13 : Comparator controls the output of PWM waveform

5.8.1. Using the Timer2 to generate periodical waveform

If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as below:

Frequency of Output = $Y \div [2 \times (K+1) \times S1 \times (S2+1)]$

Where,	Y = tm2c[7:4] : frequency of selected clock source					
	K = tm2b[7:0] : bound register in decimal					
	S1 = tm2s[6:5] : pre-scalar (S1= 1, 4, 16, 64)					
	S2 = tm2s[4:0] : scalar register in decimal (S2= 0 ~ 31)					
Exam	ple 1:					
	tm2c = 0b0001_1000, Y=8MHz					
	tm2b = 0b0111_1111, K=127					
	tm2s = 0b0000_00000, S1=1, S2=0					
	→ frequency of output = 8MHz ÷ [2 × (127+1) × 1 × (0+1)] = 31.25KHz					
Example 2:						
	tm2c = 0b0001_1000, Y=8MHz					
	tm2b = 0b0111_1111, K=127					
	tm2s[7:0] = 0b0111_11111, S1=64 , S2 = 31					
	→ frequency = 8MHz ÷ (2 × (127+1) × 64 × (31+1)) =15.25Hz					
Example 3:						
	tm2c = 0b0001_1000, Y=8MHz					
	tm2b = 0b0000_1111, K=15					
	tm2s = 0b0000_00000, S1=1, S2=0					
	→ frequency = 8MHz ÷ (2 × (15+1) × 1 × (0+1)) = 250KHz					
Example 4:						
t	m2c = 0b0001_1000, Y=8MHz					
t	m2b = 0b0000_0001, K=1					


```
tm2s = 0b0000_00000, S1=1, S2=0
```

```
→ frequency = 8MHz ÷ ( 2 × (1+1) × 1 × (0+1) ) =2MHz
```

The sample program for using the Timer2 to generate periodical waveform from PA3 is shown as below:

```
Void FPPA0 (void)
{
     . ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V
     ...
     tm2ct = 0x00;
     tm2b = 0x7f;
     tm2s = 0b0_00_00001;
                                             //
                                                   8-bit PWM, pre-scalar = 1, scalar = 2
     tm2c = 0b0001_10_0_0;
                                             //
                                                   system clock, output=PA3, period mode
     while(1)
     {
           nop;
     }
}
```

5.8.2. Using the Timer2 to generate 8-bit PWM waveform

If 8-bit PWM mode is selected, it should set *tm2c*[1]=1 and *tm2s*[7]=0, the frequency and duty cycle of output waveform can be summarized as below:

Frequency of Output = $Y \div [256 \times S1 \times (S2+1)]$ Duty of Output = [(K+1) ÷ 256]×100%

Where, Y = tm2c[7:4]: frequency of selected clock source

K = tm2b[7:0] : bound register in decimal

```
S1= tm2s[6:5] : pre-scalar (S1= 1, 4, 16, 64)
```

S2 = tm2s[4:0] : scalar register in decimal (S2= 0 ~ 31)

Example 1:

tm2c = 0b0001_1010, Y=8MHz

tm2b = 0b0111_1111, K=127

tm2s = 0b0000_00000, S1=1, S2=0

- → frequency of output = 8MHz ÷ (256 × 1 × (0+1)) = 31.25KHz
- → duty of output = [(127+1) ÷ 256] × 100% = 50%

Example 2:

tm2c = 0b0001_1010, Y=8MHz

tm2b = 0b0111_1111, K=127

tm2s = 0b0111_1111, S1=64, S2=31

- → frequency of output = 8MHz ÷ (256 × 64 × (31+1)) = 15.25Hz
- → duty of output = [(127+1) ÷ 256] × 100% = 50%

Example 3:

tm2c = 0b0001_1010, Y=8MHz

tm2b = 0b1111_1111, K=255

 $tm2s = 0b0000_00000, S1=1, S2=0$

➔ PWM output keep high

→ duty of output = [(255+1) ÷ 256] × 100% = 100%

Example 4:

tm2c = 0b0001_1010, Y=8MHz tm2b = 0b0000_1001, K = 9 tm2s = 0b0000_00000, S1=1, S2=0 \rightarrow frequency of output = 8MHz \div (256 × 1 × (0+1)) = 31.25KHz \rightarrow duty of output = [(9+1) \div 256] × 100% = 3.9%

The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:

```
void
       FPPA0 (void)
{
   .ADJUST_IC
                   SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V
   wdreset;
   tm2ct = 0x00;
   tm2b = 0x7f;
   tm2s = 0b0_00_00001;
                                    //
                                           8-bit PWM, pre-scalar = 1, scalar = 2
   tm2c = 0b0001_10_1_0;
                                    //
                                           system clock, output=PA3, PWM mode
   while(1)
   {
        nop;
   }
}
```


5.8.3. Using the Timer2 to generate 6-bit PWM waveform

If 6-bit PWM mode is selected, it should set *tm2c*[1]=1 and *tm2s*[7]=1, the frequency and duty cycle of output waveform can be summarized as below:

Frequency of Output = $Y \div [64 \times S1 \times (S2+1)]$ Duty of Output = [(K+1) ÷ 64] × 100%

Where, tm2c[7:4] = Y: frequency of selected clock source tm2b[7:0] = K: bound register in decimal tm2s[6:5] = S1: pre-scalar (S1= 1, 4, 16, 64) tm2s[4:0] = S2: scalar register in decimal (S2= 0 ~ 31)

Example 1:

tm2c = 0b0001_1010, Y=8MHz tm2b = 0b0001_1111, K=31 tm2s = 0b1000_00000, S1=1, S2=0 \rightarrow frequency of output = 8MHz \div (64 × 1 × (0+1)) = 125KHz \rightarrow duty = [(31+1) \div 64] × 100% = 50%

Example 2:

tm2c = 0b0001_1010, Y=8MHz tm2b = 0b0001_1111, K=31 tm2s = 0b1111_11111, S1=64, S2=31 \rightarrow frequency of output = 8MHz \div (64 × 64 × (31+1)) = 61.03 Hz \rightarrow duty of output = [(31+1) \div 64] × 100% = 50%

Example 3:

tm2c = 0b0001_1010, Y=8MHz tm2b = 0b0011_1111, K=63 tm2s = 0b1000_00000, S1=1, S2=0 → PWM output keep high → duty of output = [(63+1) ÷ 64] × 100% = 100%

Example 4:

tm2c = 0b0001_1010, Y=8MHz tm2b = 0b0000_0000, K=0 tm2s = 0b1000_00000, S1=1, S2=0 \rightarrow frequency = 8MHz \div (64 x 1 x (0+1)) = 125KHz \rightarrow duty = [(0+1) \div 64] x 100% =1.5%

5.9. 11-bit PWM Generator

Three 11-bit hardware PWM generators (PWMG0, PWMG1 & PWMG2) are implemented in the PFS132. The following descriptions thereinafter are for PWMG0 only. It is because PWMG1 & PWMG2 have the same structures and functions with PWMG0.

Their individual outputs are listed as below:

- PWMG0 PA0, PB4, PB5
- PWMG1 PA4, PB6, PB7
- PWMG2 PA3, PA5, PB2, PB3 (Note: PA5 open drain output only, user need to enable the internal pull-high resistor or add an external pull-high resistor when using, and ICE does not support PA5 PWM function.)

5.9.1. PWM Waveform

A PWM output waveform (Fig.14) has a time-base (T_{Period} = Time of Period) and a time with output high level (Duty Cycle). The frequency of the PWM output is the inverse of the period (f_{PWM} = 1/ T_{Period}), the resolution of the PWM is the clock count numbers for one period (N bits resolution, $2^N \times T_{clock} = T_{Period}$).

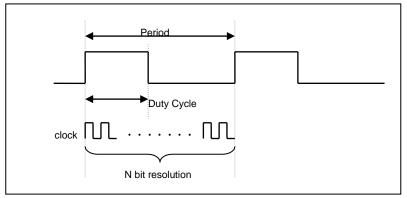


Fig.14: PWM Output Waveform

5.9.2. Hardware and Timing Diagram

Three 11-bit hardware PWM generators are built inside the PFS132; Fig.15 shows the hardware diagram PWMG0 as an example. The clock source can be IHRC or system clock. Depending on the setting of register PWMC, PWM can be optionally output to PA0, PB4 or PB5. At this point, PWM signal will be forced to output regardless of whether PX.x is the input or output state. The period of PWM waveform is defined in the PWM upper bond high and low registers, the duty cycle of PWM waveform is defined in the PWM duty high and low registers. Users can also use the comparator result to control the output of the PWM waveform by using the GPC_PWM code option.

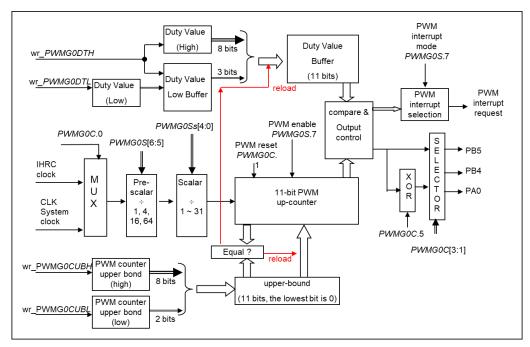


Fig.15: Hardware Diagram of 11-bit PWM Generator

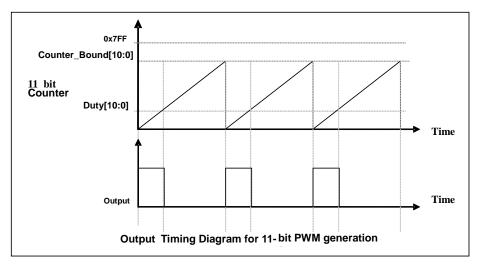


Fig.16: Output Timing Diagram of 11-bit PWM Generator

5.9.3. Equations for 11-bit PWM Generator

PWM Frequency FPWM = F clock source \div [**P** × (K + 1) × (CB10_1 + 1)]

PWM Duty(in time) = $(1 / F_{PWM}) \times (DB10_1 + DB0 \times 0.5 + 0.5) \div (CB10_1 + 1)$

PWM Duty(in percentage) = (DB10_1 + DB0 × 0.5 + 0.5) ÷ (CB10_1 + 1) × 100%

Where, P = PWMGxS [6:5] : pre-scalar (P = 1, 4, 16, 64)
K = PWMGxS [4:0] : scalar in decimal (K =0 ~ 31)
DB10_1 = Duty_Bound[10:1] = {PWMGxDTH[7:0], PWMGxDTL[7:6]}, duty bound
DB0 = Duty_Bound[0] = PWMGxDTL[5]
CB10_1 = Counter_Bound[10:1] = {PWMGxCUBH[7:0], PWMGxCUBL[7:6]}, counter bound

5.9.4. Complementary PWM with Dead Zones

Users can use two 11bit PWM generators to output two complementary PWM waveforms with dead zones. Take PWMG0 output PWM0, PWMG1 output PWM1 as an example, the program reference is as follows.

In addition, Timer2 and Timer3 can also output 8-bit PWM waveforms with complementary dead zones of two bands. The principle is similar to this, and it will not be described in detail.

#define dead_zone	_ R	2	//	Cont	rol dead-time before rising edge of PWM1
#define dead_zone	_ F	3	//	Cont	rol dead-time after falling edge of PWM1
void FPPA0 (voi	d)				
{					
.ADJUST_IC	SYSC	CLK=IHRC	/16, IHRC	≔16MI	Hz, VDD=5V;
//					
Byte duty	=	60;		//	Represents the duty cycle of PWM0
Byte _duty =	100 -	duty;		//	Represents the duty cycle of PWM1
//******************* Set	the cou	unter uppe	r bound ar	nd duty	/ cycle *************
PWMG0DTL	=	0x00;			
PWMG0DTH	=	_duty;			
PWMG0CUBL	=	0x00;			
PWMG0CUBH	=	100;			
PWMG1DTL	=	0x00;			
PWMG1DTH	=	_duty - c	lead_zone	e_ <i>F;</i>	
// Use duty cy	cle to a	djust the d	ead-time a	after th	e falling edge of PWM1
PWMG1CUBL	=	0x00;			
PWMG1CUBH	=	100; // ⁻	The above	e value	es are assigned before enable PWM output

\$ PWMG0C Enable,Inverse,PA0,SYSCLK; //PWMG0 output the PWM0 waveform to PA0
\$ PWMG0S INTR_AT_DUTY,/1,/1;

.delay dead_zone_R; // Use delay to adjust the dead-time before the rising edge of PWM1

\$ PWMG1C Enable, PA4, SYSCLK; //PWMG1 output the PWM1 waveform to PA4 \$ PWMG1S INTR_AT_DUTY, /1, /1;

//***** Note: for the output control part of the program, the code sequence can not be moved *****//

```
While(1)
{nop;  }
```

```
}
```

The PWM0 / PWM1 waveform obtained by the above program is shown in Fig. 17.

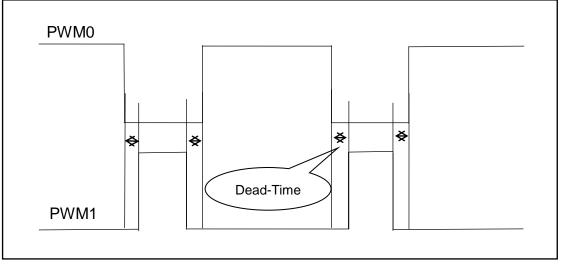


Fig. 17: Two complementary PWM waveforms with dead zones

Users can modify the **dead_zone_R** and **dead_zone_F** values in the program to adjust the dead-time. Table 5 provides data corresponding to different dead-time for users' reference. Where, if dead-time = 4us, then there are dead zones of 4us before and after PWM1 high level.

dead-time (us)	dead_zone_R	dead_zone_F
4 (minimum)	0	2
6	2	3
8	4	4
10	6	5
12	8	6
14	10	7

Table 5: The value of dead-time for reference

dead_zone_R and **dead_zone_F** need to work together to get an ideal dead-time. If user wants to adjust other dead-time, please note that **dead_zone_R** and **dead_zone_F** need to meet the following criteria:

dead_zone_R	dead_zone_F
1/2/3	> 1
4/5/6/7	> 2
8 / 9	> 3

5.10. WatchDog Timer

The watchdog timer (WDT) is a counter with clock coming from ILRC. WDT can be cleared by power-on-reset or by command *wdreset* at any time. There are four different timeout periods of watchdog timer to be chosen by setting the *misc* register, it is:

- ◆ 8k ILRC clocks period if register misc[1:0]=00 (default)
- 16k ILRC clocks period if register misc[1:0]=01
- 64k ILRC clocks period if register misc[1:0]=10
- ◆ 256k ILRC clocks period if register misc[1:0]=11

The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature; user should reserve guard band for save operation. Besides, the watchdog period will also be shorter than expected after Reset or Wakeup events. It is suggested to clear WDT by wdreset command after these events to ensure enough clock periods before WDT timeout.

When WDT is timeout, PFS132 will be reset to restart the program execution. The relative timing diagram of watchdog timer is shown as Fig.18.

VDD	
WD Time <u>Out</u>	
Program	
Execution	
Watch Dog Time	e Out Sequence

Fig.18: Sequence of Watch Dog Time Out	Fig.18:	Sequence	of Watch	Doa	Time Out
--	---------	----------	----------	-----	----------

5.11. Interrupt

There are eight interrupt lines for PFS132:

- External interrupt PA0/PB5
- External interrupt PB0/PA4
- ADC interrupt
- Timer16 interrupt
- GPC interrupt
- PWMG0 interrupt
- Timer2 interrupt
- Timer3 interrupt

Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the hardware diagram of interrupt function is shown as Fig.19. All the interrupt request flags are set by hardware and cleared by writing *intrq* register. When the request flags are set, it can be rising edge, falling edge or both, depending on the setting of register *integs*. All the interrupt request lines are also controlled by *engint* instruction (enable global interrupt) to enable interrupt operation and *disgint* instruction (disable global interrupt) to disable it.

The stack memory for interrupt is shared with data memory and its address is specified by stack register *sp*. Since the program counter is 16 bits width, the bit 0 of stack register *sp* should be kept 0. Moreover, user can use *pushaf / popaf* instructions to store or restore the values of *ACC* and *flag* register *to / from* stack memory. Since the stack memory is shared with data memory, the stack position and level are arranged by the compiler in Mini-C project. When defining the stack level in ASM project, users should arrange their locations carefully to prevent address conflicts.

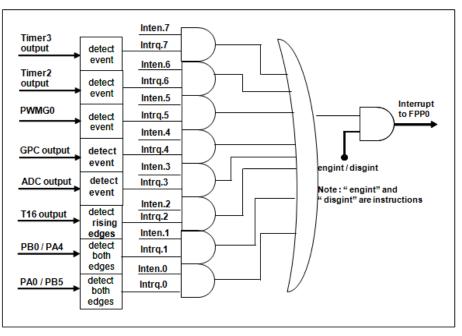


Fig.19: Hardware diagram of interrupt controller

Once the interrupt occurs, its operation will be:

- The program counter will be stored automatically to the stack memory specified by register **sp.**
- New *sp* will be updated to *sp+2*.
- Global interrupt will be disabled automatically.

• The next instruction will be fetched from address 0x010.

During the interrupt service routine, the interrupt source can be determined by reading the *intrq* register. **Note:** Even if INTEN=0, INTRQ will be still triggered by the interrupt source.

After finishing the interrupt service routine and issuing the *reti* instruction to return back, its operation will be:

- The program counter will be restored automatically from the stack memory specified by register sp.
- New *sp* will be updated to *sp-2*.
- Global interrupt will be enabled automatically.
- The next instruction will be the original one before interrupt.

User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four bytes for two levels interrupt. For interrupt operation, the following sample program shows how to handle the interrupt, noticing that it needs four bytes stack memory to handle interrupt and *pushaf*.

```
void
              FPPA0
                           (void)
 {
                           // INTEN =1; interrupt request when PA0 level changed
     $ INTEN PAO;
     INTRQ = 0;
                           // clear INTRQ
                           // global interrupt enable
     ENGINT
    DISGINT
                           // global interrupt disable
 }
void
        Interrupt (void) // interrupt service routine
{
        PUSHAF
                           // store ALU and FLAG register
        // If INTEN.PA0 will be opened and closed dynamically,
        // user can judge whether INTEN.PA0 =1 or not.
        // Example: If (INTEN.PA0 && INTRQ.PA0) {...}
        // If INTEN.PA0 is always enable,
        // user can omit the INTEN.PA0 judgement to speed up interrupt service routine.
If (INTRQ.PA0)
                           // Here for PA0 interrupt service routine
{
                           // Delete corresponding bit (take PA0 for example)
  INTRQ.PA0 = 0;
}
```


}

PFS132 8bit MTP MCU with 12-bit ADC

// X : INTRQ = 0;	// It is not recommended to use INTRQ = 0 to clear all at the end of the
	// interrupt service routine.
	// It may accidentally clear out the interrupts that have just occurred
	// and are not yet processed.
POPAF	// restore ALU and FLAG register

5.12. Power-Save and Power-Down

There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down modes. ON mode is the state of normal operation with all functions ON, Power-Save mode ("*stopexe*") is the state to reduce operating current and CPU keeps ready to continue, Power-Down mode ("*stopsys*") is used to save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power with wake-up occasionally and Power-Down mode is used in the system which needs power down deeply with seldom wake-up. Table 6 shows the differences in oscillator modules between Power-Save mode ("*stopexe*") and Power-Down mode ("*stopsys*").

Differences in oscillator modules between STOPSYS and STOPEXE					
	IHRC	ILRC	EOSC		
STOPSYS	Stop	Stop	Stop		
STOPEXE	No Change	No Change	No Change		

Table 6: Differences in oscillator modules between STOPSYS and STOPEXE

5.12.1. Power-Save mode ("stopexe")

Using "*stopexe*" instruction to enter the Power-Save mode, only system clock is disabled, remaining all the oscillator modules active. For CPU, it stops executing; however, for Timer16, counter keep counting if its clock source is not the system clock. The wake-up sources for "stopexe" can be IO-toggle or Timer16 counts to set values when the clock source of Timer16 is IHRC or ILRC modules, or wakeup by comparator when setting GPCC.7=1 and GPCS.6=1 to enable the comparator wakeup function at the same time. Wake-up from input pins can be considered as a continuation of normal execution, the detail information for Power-Save mode shows below:

- IHRC and EOSC oscillator modules: No change, keep active if it was enabled
- ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up
- System clock: Disable, therefore, CPU stops execution
- MTP memory is turned off
- Timer counter: Stop counting if system clock is selected or the corresponding oscillator module is disabled; otherwise, it keeps counting. (The Timer contains TM16, TM2, TM3, PWMG0, PWMG1, and PWMG2.)
- Wake-up sources:
 - a. IO toggle wake-up: IO toggling in digital input mode (*PxC* bit is 1 and *PxDIER* bit is 1).

- b. Timer wake-up: If the clock source of Timer is not the SYSCLK, the system will be awakened when the Timer counter reaches the set value.
- c. Comparator wake-up: It need setting *GPCC*.7=1 and *GPCS*.6=1 to enable the comparator wake-up function at the same time. Please note: the internal 1.20V bandgap reference voltage is not suitable for the comparator wake-up function.

An example shows how to use Timer16 to wake-up from "stopexe":

\$ T16M	ILRC, /1, BIT8	// Timer16 setting
WORD	<i>count</i> = 0;	
STT16	count;	
stopexe;		

The initial counting value of Timer16 is zero and the system will be woken up after the Timer16 counts 256 ILRC clocks.

5.12.2. Power-Down mode ("stopsys")

Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using the "*stopsys*" instruction, this chip will be put on Power-Down mode directly. It is recommend to set GPCC.7=0 to disable the comparator before the command "stopsys". The following shows the internal status of PFS132 detail when "*stopsys*" command is issued:

- All the oscillator modules are turned off
- MTP memory is turned off
- The contents of SRAM and registers remain unchanged
- Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)

Wake-up from input pins can be considered as a continuation of normal execution. To minimize power consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The reference sample program for power down is shown as below:

CLKMD	=	0xF4;	//	Change clock from IHRC to ILRC
CLKMD.4	=	0;	//	disable IHRC
 while (1) {				
STO	PSYS;		//	enter power-down
if (.) bi	reak;	//	if wakeup happen and check OK, then return to high speed
	-		//	else stay in power-down mode again
}				-
CLKMD=	0x34	l;	//	Change clock from ILRC to IHRC/2

5.12.3. Wake-up

After entering the Power-Down or Power-Save modes, the PFS132 can be resumed to normal operation by toggling IO pins, Timer16 interrupt is available for Power-Save mode ONLY. Table 7 shows the differences in wake-up sources between STOPSYS and STOPEXE.

Differences in wake-up sources between STOPSYS and STOPEXE				
	IO Toggle	Timer Interrupt	Comparator wake-up	
STOPSYS	Yes	No	No	
STOPEXE	Yes	Yes	Yes	

Table 7: Differences in wake-up sources between Power-Save mode and Power-Down mode

When using the IO pins to wake-up the PFS132, registers *pxdier* should be properly set to enable the wake-up function for every corresponding pin. The time for normal wake-up is about 3000 ILRC clocks counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by *misc* register, and the time for fast wake-up is about 45 ILRC clocks from IO toggling.

Suspend mode	Wake-up mode	Wake-up time (twup) from IO toggle	
STOPEXE suspend		45 * Tu	
or	Fast wake-up	45 * TilRC,	
STOPSYS suspend		Where TILRC is the time period of ILRC	
STOPEXE suspend		2000 * T	
or	Normal wake-up	3000 * TilRC,	
STOPSYS suspend		Where TILRC is the clock period of ILRC	

Please notice that when Fast boot-up is selected, no matter which wake-up mode is selected in misc.5, the wake-up mode will be forced to be FAST. If Normal boot-up is selected, the wake-up mode is determined by misc.5.

5.13. IO Pins

All the pins can be independently set into two states output or input by configuring the data registers (*pa, pb*), control registers (*pac, pbc*), pull-high registers (*paph, pbph*) and pull-low registers(*papl, pbpl*). All these pins have Schmitt-trigger input buffer and output driver with CMOS level. When it is set to output low, the pull-high resistor is turned off automatically; it is set to output high, the pull-low resistor is turned off automatically. If user wants to read the pin state, please notice that it should be set to input mode before reading the data port; if user reads the data port when it is set to output mode, the reading data comes from data register, NOT from IO pad. As an example, Table 8 shows the configuration table of bit 0 of port A. The hardware diagram of IO buffer is also shown as Fig.20.

pa.0	pac.0	paph.0	papl.0	描述
Х	0	0	0	Input without pull-high / pull-low resistor
Х	0	1	0	Input with pull-high resistor
Х	0	0	1	Input with pull-low resistor
Х	0	1	1	Input with pull-high and pull-low resistor
0	1	Х	Х	Output low without pull-high and pull-low resistor
1	1	Х	Х	Output high without pull-high and pull-low resistor

Table 8: PA0 Configuration Table

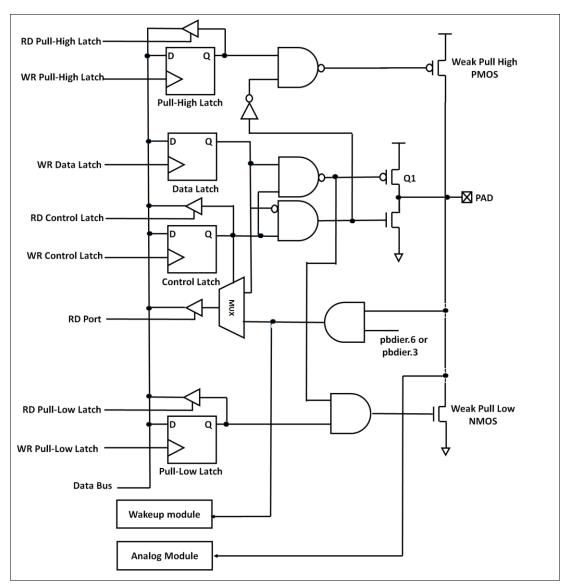


Fig.20: Hardware diagram of IO buffer

Other than PA5, all the IO pins have the same structure; PA5 can be open-drain ONLY when setting to output mode (without Q1). The corresponding bits in registers *padier / pbdier* should be set to low to prevent leakage current for those pins are selected to be analog function. When PFS132 is put in power-down or power-save mode, every pin can be used to wake-up system by toggling its state. Therefore, those pins needed to wake-up system must be set to input mode and set the corresponding bits of registers *padier* and *pbdier* to high. The same reason, *padier*.0 should be set high when PA0 is used as external interrupt pin, *pbdier*.0 for PB0, *padier*.4 for PA4 and *pbdier*.5 for PB5.

5.14. Reset and LVR

5.14.1. Reset

There are many causes to reset the PFS132, once reset is asserted, most of all the registers in PFS132 will be set to default values, system should be restarted once abnormal cases happen, or by jumping program counter to address 0x00.

After a power-on reset or LVR reset occurs, if V_{DD} is greater than V_{DR} (data storage voltage), the value of the data memory will be retained, but if the SRAM is cleared after re-power, the data cannot be retained; if V_{DD} is less than V_{DR} , the data The value of the memory will be turned into an unknown state that is in an indeterminate state.

If a reset occurs, and there is an instruction or syntax to clear SRAM in the program, the previous data will be cleared during program initialization and cannot be retained.

The content will be kept when reset comes from PRSTB pin or WDT timeout.

5.14.2. LVR reset

By code option, there are many different levels of LVR for reset; usually, user selects LVR reset level to be in conjunction with operating frequency and supply voltage.

5.15. Analog-to-Digital Conversion (ADC) module

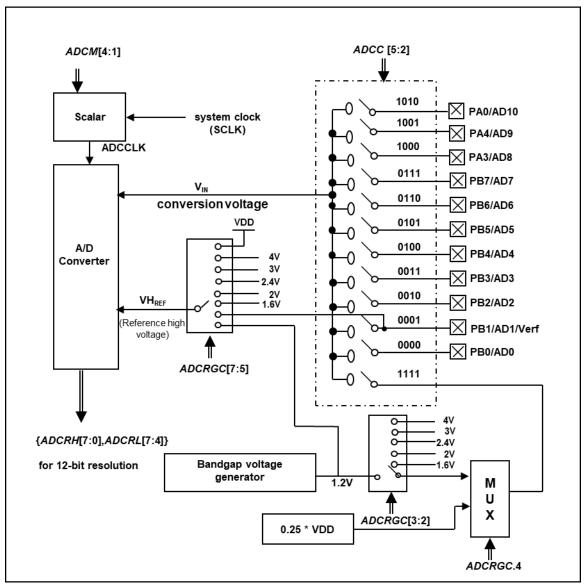


Fig.21: ADC Block Diagram

There are seven registers when using the ADC module, which are:

- ◆ ADC Control Register (*adcc*)
- ◆ ADC Regulator Control Register (*adcrgc*)
- ◆ ADC Mode Register (*adcm*)
- ADC Result High/Low Register (*adcrh*, *adcrl*)
- Port A/B Digital Input Enable Register (*padier, pbdier*)

The following steps are required to do the AD conversion procedure:

- (1) Configure the voltage reference high by *adcrgc* register
- (2) Configure the AD conversion clock by *adcm* register
- (3) Configure the pin as analog input by padier, pbdier register
- (4) Select the ADC input channel by adcc register
- (5) Enable the ADC module by *adcc* register
- (6) Delay a certain amount of time after enabling the ADC module

Condition 1: Using bandgap 1.2V/1.6V/2.4V or 2V/3V/4V related circuit, either it is used as an internal reference high voltage or an AD Input channel, it must delay more than 1ms. Or it must delay 200 AD clocks when the time of 200 AD clocks is larger than 1ms. When internal BG/2V/3V/4V is enabled as reference high voltage, IHRC must be opened.

Condition 2: Without using any bandgap 1.2V or 2V/3V/4V related circuit, it needs to delay 200 AD clocks only.

Note: The 200 AD clocks in the above two conditions, which refer to the ADC conversion clock rather than the system clock (SYSCLK) after configured by the ADCM register.

(7) Execute the AD conversion and check if ADC data is ready

set '1' to *addc*.6 to start the conversion and check whether *addc*.6 is '1'

(8) Read the ADC result registers:

First read the *adcrh* register and then read the *adcrl* register.

If user power down the ADC and enable the ADC again, or switch ADC reference voltage and input channel, be sure to go to step 6 to confirm the ADC becomes ready before the conversion.

5.15.1. The input requirement for AD conversion

For the AD conversion to meet its specified accuracy, the charge holding capacitor (C_{HOLD}) must be allowed to fully charge to the voltage reference high level and discharge to the voltage reference low level. The analog input model is shown as Fig.22, the signal driving source impedance (Rs) and the internal sampling switch impedance (Rss) will affect the required time to charge the capacitor C_{HOLD} directly. The internal sampling switch impedance may vary with ADC supply voltage; the signal driving source impedance will affect accuracy of analog input signal. User must ensure the measured signal is stable before sampling; therefore, the maximum signal driving source impedance is highly dependent on the frequency of signal to be measured. The recommended maximum impedance for analog driving source is about 10K Ω under 500KHz input frequency.

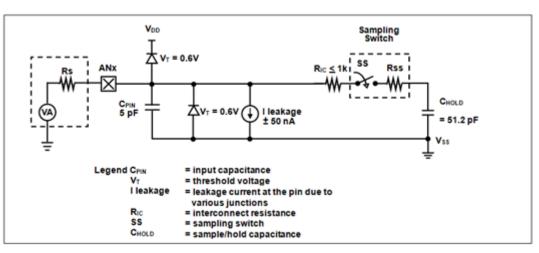


Fig.22: Analog Input Model

Before starting the AD conversion, the minimum signal acquisition time should be met for the selected analog input signal, the selection of ADCLK must be met the minimum signal acquisition time.

5.15.2. Select the reference high voltage

The ADC reference high voltage can be selected via bit[7:5] of register *adcrgc* and its option can be V_{DD} , 4V, 3V, 2V, 1.2V, 1.6V & 2.4V bandgap reference voltage or PB1 from external pin.

5.15.3. ADC clock selection

The clock of ADC module (ADCLK) can be selected by **adcm** register; there are 8 possible options for ADCLK from CLK+1 to CLK+128 (CLK is the system clock). Due to the signal acquisition time T_{ACQ} is one clock period of ADCLK, the ADCLK must meet that requirement. The recommended ADC clock is to operate at 2us.

5.15.4. Configure the analog pins

There are 12 analog signals can be selected for AD conversion, 11 analog input signals come from external pins and one is from internal bandgap reference voltage or 0.25^*V_{DD} . There are 6 voltage levels selectable for the internal bandgap reference, they are 1.2V, 1.6V, 2.4V, 2V, 3V and 4V. For external pins, the analog signals are shared with Port A[0], Port A[3], Port A[4], and Port B[7:0]. To avoid leakage current at the digital circuit, those pins defined for analog input should disable the digital input function (set the corresponding bit of **padier or pbdier** register to be 0).

The measurement signals of ADC belong to small signal; it should avoid the measured signal to be interfered during the measurement period, the selected pin should (1) be set to input mode (2) turn off weak pull-high resistor (3) set the corresponding pin to analog input by port A/B digital input disable register (*padier / pbdier*).

5.15.5. Using the ADC

The following example shows how to use ADC with PB0~PB3.

First, defining the selected pins:

PBC	=	0B_XXXX_0000;	//	PB0 ~ PB3 as Input
PBPH	=	0B_XXXX_0000;	//	PB0 ~ PB3 without pull-high
PBPL	=	0B_XXXX_0000;	//	PB0~PB3 without pull-low
PBDIER	=	0B_XXXX_0000;	//	PB0 ~ PB3 digital input is disabled

Next, setting *ADCC* register, example as below:

\$	ADCC	Enable, PB3;	//	set PB3 as ADC input
\$	ADCC	Enable, PB2;	//	set PB2 as ADC input
\$	ADCC	Enable, PB0;	//	set PB0 as ADC input
// N	lote: Onl	y one input channel can be	seleceted for	each AD conversion

Next, setting **ADCM** and ADCRGC register, example as below:

\$ ADCM 12BIT, /16;	// recommend /16 @System Clock=8MHz
	// recommend ADCLK=500KHz
\$ ADCM 12BIT, /8;	// recommend /8 @System Clock=4MHz
	// recommend ADCLK=500KHz
\$ ADCRGC VDD;	// reference voltage is VDD,
	// the delay is 200 ADCLK

Next, delay 400us (ADCLK=500KHz, 200*ADCLK=400us), example as below:

Delay 8*400;	//	System Clock=8MHz
.Delay 4*400;	//	System Clock=4MHz

Note: If using internal reference high voltage such as bandgap 1.2V or 2V/3V/4V, the delay time must be more than 1ms.

\$ ASDCRGC 3V;	// AD reference voltage is 3V
.Delay 4*1010;	// if the system clock=4MHz
	// the delay time must be more than 1ms

Please Note: If using bandgap 1.2V or 2V/3V/4V as ADC input channel, the delay time must be more than 1ms.

\$ ADCC ADC \$ ADCRGC VDD ADC_BG E	BG_2V	//	reference voltage is VDD
.Delay 4*1010;		 	input channel is BG_2V if the system clock=4MHz the delay time must be more than 1ms
Then, start the ADC conversion:		//	the delay time must be more than mis

AD_START= 1;	//	start ADC conversion
while (! AD_DONE) NULL;	//	wait ADC conversion result

Finally, it can read ADC result when AD_DONE is high:

WORD		Data;	//	two bytes result: ADCRH and ADCRL
Data\$1	=	ADCRH		
Data\$0	=	ADCRL;		
Data	=	Data >> 4;		

The ADC can be disabled by using the following method:

	\$ ADCC	Disable;	
or			
	ADCC	=	0,

5.16. Multiplier

There is an 8x8 multiplier on-chip to enhance hardware capability in arithmetic function, its multiplication is an 8 x8 unsigned operation and can be finished in one clock cycle. Before issuing the *mul* command, both multiplicand and multiplicator must be put on ACC and register *mulop* (0x08); After *mul* command, the high byte result will be put on register *mulrh* (0x09) and low byte result on ACC. The hardware diagram of this multiplier is shown as Fig.23.

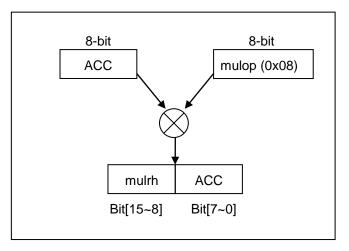


Fig.23: Block diagram of hardware multiplier

6. IO Registers

6.1. ACC Status Flag Register (*flag*), IO address = 0x00

Bit	Reset	R/W	Description	
7 - 4	-	-	Reserved. Please do not use.	
3	0	R/W	OV (Overflow Flag). This bit is set to be 1 whenever the sign operation is overflow.	
2	0	R/W	AC (Auxiliary Carry Flag). There are two conditions to set this bit, the first one is carry out of low nibble in addition operation and the other one is borrow from the high nibble into low nibble in subtraction operation.	
1	0	R/W	C (Carry Flag). There are two conditions to set this bit, the first one is carry out in addition operation, and the other one is borrow in subtraction operation. Carry is also affected by shift with carry instruction.	
0	0	R/W	Z (Zero Flag). This bit will be set when the result of arithmetic or logic operation is zero; Otherwise, it is cleared.	

6.2. Stack Pointer Register (*sp*), IO address = 0x02

Bit	Reset	R/W	Description
7 0			Stack Pointer Register. Read out the current stack pointer, or write to change the stack
7-0 -	- R/W	pointer. Please notice that bit 0 should be kept 0 due to program counter is 16 bits.	

6.3. Clock Mode Register (*clkmd*), IO address = 0x03

Bit	Reset	R/W	Desc	cription			
			System clock (CLK) selection:				
			Type 0, clkmd[3]=0	Type 1, clkmd[3]=1			
			000: IHRC÷4	000: IHRC÷16			
			001: IHRC÷2	001: IHRC÷8			
7 - 5	111	R/W	010: reserved	010: ILRC÷16 (6S-M-001 ICE does NOT			
1 0		10,00	011: EOSC÷4	Support.)			
			100: EOSC÷2	011: IHRC÷32			
			101: EOSC	100: IHRC÷64			
						110: ILRC÷4	101: EOSC÷8
			111: ILRC (default)	11x: reserved			
4	1	R/W	Internal High RC Enable. 0 / 1: disable / enable				
3	3 0	R/W	Clock Type Select. This bit is used to select the	the clock type in bit [7:5].			
3		R/W	0 / 1: Type 0 / Type 1				
2	1	1 R/W	Internal Low RC Enable. 0 / 1: disable / enal	ble			
	1	10,00	If ILRC is disabled, watchdog timer is also d	isabled.			
1	1	R/W	Watch Dog Enable. 0 / 1: disable / enable				
0	0	R/W	Pin PA5/PRSTB function. 0 / 1: PA5 / PRST	В			

6.4. Interrupt Enable Register (*inten*), IO address = 0x04

Bit	Reset	R/W	Description	
7	0	R/W	Enable interrupt from Timer3. 0 / 1: disable / enable.	
6	0	R/W	Enable interrupt from Timer2. 0 / 1: disable / enable.	
5	0	R/W	Enable interrupt from PWMG0. 0 / 1: disable / enable.	
4	0	R/W	Enable interrupt from comparator. 0 / 1: disable / enable.	
3	0	R/W	Enable interrupt from ADC. 0 / 1: disable / enable.	
2	0	R/W	Enable interrupt from Timer16 overflow. 0 / 1: disable / enable.	
1	0	R/W	Enable interrupt from PB0/PA4. 0 / 1: disable / enable.	
0	0	R/W	Enable interrupt from PA0/PB5. 0 / 1: disable / enable.	

6.5. Interrupt Request Register (*intrq*), IO address = 0x05

Bit	Reset	R/W	Description
7	-	R/W	Interrupt Request from Timer3, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
6	-	R/W	Interrupt Request from Timer2, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
5	-	R/W	Interrupt Request from PWMG0, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
4	-	R/W	Interrupt Request from comparator, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
3	-	R/W	Interrupt Request from ADC, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
2	-	R/W	Interrupt Request from Timer16, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
1	-	R/W	Interrupt Request from pin PB0/PA4, this bit is set by hardware and cleared by software. 0 / 1: No request / Request
0	-	R/W	Interrupt Request from pin PA0/PB5, this bit is set by hardware and cleared by software. 0 / 1: No Request / request

6.6. Multiplier Operand Register (*mulop*), IO address = 0x08

Bit	Reset	R/W	Description
7 - 0	-	R/W	Operand for hardware multiplication operation.

6.7. Multiplier Result High Byte Register (*mulrh*), IO address = 0x09

Bit	Reset	R/W	Description
7 - 0	-	RO	High byte result of multiplication operation (read only).

6.8. Timer16 mode Register (*t16m*), IO address = 0x06

Bit	Reset	R/W	Description
			Timer16 Clock source selection.
			000: disable
			001: CLK (system clock)
			010: reserved
7 - 5	000	R/W	011: PA4 falling edge (from external pin)
			100: IHRC
			101: EOSC
			110: ILRC
			111: PA0 falling edge (from external pin)
			Timer16 clock pre-divider.
		R/W	00: ÷1
4 - 3	00		01: : 4
			10: ÷16
			11: : 64
	000	R/W	Interrupt source selection. Interrupt event happens when the selected bit status is
			changed.
			0 : bit 8 of Timer16
			1 : bit 9 of Timer16
			2 : bit 10 of Timer16
2 - 0			3 : bit 11 of Timer16
			4 : bit 12 of Timer16
			5 : bit 13 of Timer16
			6 : bit 14 of Timer16
			7 : bit 15 of Timer16

6.9. External Oscillator setting Register (*eoscr*), IO address = 0x0a

Bit	Reset	R/W	Description
7	0	WO	Enable external crystal oscillator. 0 / 1 : Disable / Enable
			External crystal oscillator selection.
			00 : reserved
6 - 5	00	WO	01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator
			10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator
			11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator
4 - 0	-	-	Reserved. Please keep 0 for future compatibility.

6.10. Interrupt Edge Select Register (*integs*), IO address = 0x0c

Bit	Reset	R/W	Description
7 - 5	-	-	Reserved.
			Timer16 edge selection.
4	0	WO	0 : rising edge of the selected bit to trigger interrupt
			1 : falling edge of the selected bit to trigger interrupt
			PB0/PA4 edge selection.
			00 : both rising edge and falling edge of the selected bit to trigger interrupt
3 - 2	00	WO	01 : rising edge of the selected bit to trigger interrupt
			10 : falling edge of the selected bit to trigger interrupt
			11 : reserved.
			PA0/PB5 edge selection.
			00 : both rising edge and falling edge of the selected bit to trigger interrupt
1 - 0	00	WO	01 : rising edge of the selected bit to trigger interrupt
			10 : falling edge of the selected bit to trigger interrupt
			11 : reserved.

6.11. Port A Digital Input Enable Register (*padier*), IO address = 0x0d

Bit	Reset	R/W	Description
			Enable PA7 digital input and wake-up event. 1 / 0 : enable / disable.
7	1	WO	This bit should be set to low to prevent leakage current when external crystal oscillator is
			used. If this bit is set to low, PA7 can NOT be used to wake-up the system.
			Enable PA6 digital input and wake-up event. 1 / 0 : enable / disable.
6	1	WO	This bit should be set to low to prevent leakage current when external crystal oscillator is
			used. If this bit is set to low, PA6 can NOT be used to wake-up the system.
5	4	WO	Enable PA5 digital input and wake-up event. 1 / 0 : enable / disable.
5	1	WO	This bit can be set to low to disable wake-up from PA5 toggling.
			Enable PA4 digital input, wake-up event and interrupt request. 1 / 0 : enable / disable.
4	1	WO	This bit can be set to low to prevent leakage current when PA4 is assigned as AD input,
			and to disable wake-up from PA4 toggling and interrupt request from this pin.
			Enable PA3 digital input and wake-up event. 1 / 0 : enable / disable.
3	1	WO	This bit should be set to low when PA3 is assigned as AD input to prevent leakage
			current. If this bit is set to low, PA3 can NOT be used to wake-up the system.
2 - 1	-	WO	Reserved. (Please keep 00 for future compatibility)
			Enable PA0 digital input, wake-up event and interrupt request. 1 /0: enable / disable.
0	1	WO	This bit can be set to low to prevent leakage current when PA0 is assigned as AD input,
			and to disable wake-up from PA0 toggling and interrupt request from this pin.

6.12. Port A Data Register (pa), IO address = 0x10

Bit	Reset	R/W	Description
7 - 0	0x00	R/W	Data register for Port A.

6.13. Port A Control Register (pac), IO address = 0x11

Bit	Reset	R/W	Description
7 - 0	0x00	R/W	Port A control registers. This register is used to define input mode or output mode for each corresponding pin of port A. 0 / 1: input / output <u>Please note that PA5 can be INPUT or OUTPUT LOW ONLY, the output state will be</u> <u>tri-state when PA5 is programmed into output mode with data 1.</u>

6.14. Port A Pull-High Register (*paph*), IO address = 0x12

Bit	Reset	R/W	Description
7 - 0	0x00	R/W	Port A pull-high register. This register is used to enable the internal pull-high device on each corresponding pin of port A and this pull high function is active only for input mode. 0 / 1 : disable / enable

6.15. Port A Pull-Low Register (papl), IO address = 0x1b

Bit	Reset	R/W	Description
			Port A pull-low registers. This register is used to enable the internal pull-low device on
7 - 0 0x0	0x00	R/W	each corresponding pin of port A.
			0 / 1 : disable / enable

6.16. Port B Digital Input Enable Register (pbdier), IO address = 0x0e

Bit	Reset	R/W	Description
			Enable PB7~PB6 digital input and wake-up event. 1 /0: enable / disable.
7 - 6	11	WO	These bits should be set to low when PB7~PB6 assigned as AD input to prevent leakage
			current. If set to low, PB7~PB6 can NOT be used to wake-up the system.
			Enable PB5 digital input, wake-up event and interrupt request. 1 /0: enable / disable.
5	1	WO	This bit can be set to low to prevent leakage current when PB5 is assigned as AD input,
			and to disable wake-up from PB5 toggling and interrupt request from this pin.
			Enable PB4~PB1 digital input and wake-up event. 1 /0: enable / disable.
4 - 1	1111	WO	These bits should be set to low when PB4~PB1 assigned as AD input to prevent leakage
			current. If set to low, PB4~PB1 can NOT be used to wake-up the system.
			Enable PB0 digital input, wake-up event and interrupt request. 1 /0: enable / disable.
0	1	WO	This bit can be set to low to prevent leakage current when PB0 is assigned as AD input,
			and to disable wake-up from PB0 toggling and interrupt request from this pin.

6.17. Port B Data Register (*pb*), IO address = 0x14

Bit	Reset	R/W	Description
7 - 0	0x00	R/W	Data register for Port B.

6.18. Port B Control Register (*pbc*), IO address = 0x15

Bit	Reset	R/W	Description
7 - 0	000	R/W	Port B control register. This register is used to define input mode or output mode for each
7-0	0x00	FX/ ¥ ¥	corresponding pin of port B. 0 / 1: input / output

6.19. Port B Pull-High Register (*pbph*), IO address = 0x16

Bit	Reset	R/W	Description
			Port B pull-high register. This register is used to enable the internal pull-high device on
7 - 0	0x00	R/W	each corresponding pin of port B and this pull high function is active only for input mode.
			0 / 1 : disable / enable

6.20. Port B Pull-Low Register (pbpl), IO address =0x1F

Bit	Reset	R/W	Description
7 - 0	0x00	R/W	Port B pull-low registers. This register is used to enable the internal pull-low device on
7-0	0,00	R/W	each corresponding pin of port B. 0 / 1 : disable / enable

6.21. Miscellaneous Register (*misc*), IO address = 0x17

Bit	Reset	R/W	Description
7 - 6	-	-	Reserved. (keep 0 for future compatibility)
5	0	WO	 Enable fast Wake-up. Fast wake-up is NOT supported when EOSC is enabled. 0: Normal wake-up. The wake-up time is 3000 ILRC clocks (Not for fast boot-up) 1: Fast wake-up. The wake-up time is 45 ILRC clocks
4	-	WO	Enable VDD/2 LCD bias voltage generator 0 / 1 : Disable / Enable (6S-M-001 ICE cannot be dynamically switched)
3	-	-	Reserved
2	0	WO	Disable LVR function.0 / 1 : Enable / Disable
1 - 0	00	WO	Watch dog time out period. 00: 8k ILRC clock period 01: 16k ILRC clock period 10: 64k ILRC clock period 11: 256k ILRC clock period

6.22. Comparator Control Register (*gpcc*), IO address = 0x18

Bit	Reset	R/W	Description
7	0	R/W	Enable comparator. 0 / 1 : disable / enable When this bit is set to enable, please also set the corresponding analog input pins to be digital disable to prevent IO leakage.
6	-	RO	Comparator result of comparator. 0: plus input < minus input 1: plus input > minus input
5	0	R/W	Select whether the comparator result output will be sampled by TM2_CLK? 0: result output NOT sampled by TM2_CLK 1: result output sampled by TM2_CLK
4	0	R/W	Inverse the polarity of result output of comparator. 0: polarity is NOT inversed. 1: polarity is inversed.
3 - 1	000	R/W	Selection the minus input (-) of comparator. 000 : PA3 001 : PA4 010 : Internal 1.20 volt bandgap reference voltage 011 : V _{internal R} 100 : PB6 101 : PB7 11X: reserved
0	0	R/W	Selection the plus input (+) of comparator. 0 : V _{internal R} 1 : PA4

6.23. Comparator Selection Register (*gpcs*), IO address = 0x19

Bit	Reset	R/W	Description
7	0	wo	Comparator output enable (to PA0).
7	0		0 / 1 : disable / enable
			Wakeup by comparator enable.
6	-	RO	(The comparator wakeup effectively when gpcc.6 electrical level changed)
			0 / 1 : disable / enable
5	0	WO	Selection of high range of comparator.
4	0	WO	Selection of low range of comparator.
	0000	000 WO	Selection the voltage level of comparator.
3 - 0	0000		0000 (lowest) ~ 1111 (highest)

Bit	Reset	R/W	Description
7 - 4	0000	R/W	Timer2 clock selection. 0000 : disable 0001 : CLK (system clock) 0010 : IHRC 0011 : reserved 0100 : ILRC 0101 : comparator output 011x : reserved 1000 : PA0 (rising edge) 1001 : ~PA0 (falling edge) 1010 : PB0 (rising edge) 1011 : ~PB0 (falling edge) 1101 : ~PB0 (falling edge) 1101 : ~PA4 (falling edge)
3 - 2	00	R/W	Timer2 output selection. 00 : disable 01 : PB2 10 : PA3 11 : PB4
1	0	R/W	Timer2 mode selection. 0 / 1 : period mode / PWM mode
0	0	R/W	Enable to inverse the polarity of Timer2 output. 0 / 1: disable / enable.

6.24. Timer2 Control Register (tm2c), IO address = 0x1c

6.25. Timer2 Counter Register (*tm2ct*), IO address = 0x1d

Bit	Reset	R/W	Description
7–0	0x00	R/W	Bit [7:0] of Timer2 counter register.

6.26. Timer2 Scalar Register (*tm2s*), IO address = 0x1e

Bit	Reset	R/W	Description
			PWM resolution selection.
7	0	WO	0 : 8-bit
			1 : 6-bit
			Timer2 clock pre-scalar.
0.5			00 : ÷ 1
6 - 5	00	WO	01 : ÷ 4
			10 : ÷ 16

Bit	Reset	R/W	Description
			11 : ÷ 64
4 - 0	00000	WO	Timer2 clock scalar.

6.27. Timer2 Bound Register (*tm2b*), IO address = 0x09

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Timer2 bound register.

6.28. PWMG0 control Register (*pwmg0c*), IO address = 0x20

Bit	Reset	R/W	Description
7	0	WO	Enable PWMG0 generator. 0 / 1 : disable / enable.
6	-	RO	Output status of PWMG0 generator.
5	0	WO	Enable to inverse the polarity of PWMG0 generator output. 0 / 1 : disable / enable.
	0	WO	PWMG0 counter reset.
4	0	WO	Writing "1" to clear PWMG0 counter and this bit will be self clear to 0 after counter reset.
	0		Select PWM output pin for PWMG0.
			000: none
		wo	001: PB5
3 - 1			011: PA0
			100: PB4
			Others: reserved
			Clock source of PWMG0 generator.
0	0	WO	0 : SYSCLK
			1 : IHRC or IHRC * 2 (by Code Option: PWM_Source)

6.29. PWMG0 Scalar Register (*pwmg0s*), IO address = 0x21

Bit	Reset	R/W	Description
			PWMG0 interrupt mode.
7	0	WO	0: Generate interrupt when counter matches the duty value
			1: Generate interrupt when counter is 0.
			PWMG0 clock pre-scalar.
			00 : ÷1
6 - 5	0	WO	01 : ÷4
			10 : ÷16
			11 : : 64
4 - 0	0	WO	PWMG0 clock divider.

6.30. PWMG0 Counter Upper Bound High Register (pwmg0cubh), IO address = 0x24

Bit	Reset	R/W	Description
7 - 0	-	WO	Bit[10:3] of PWMG0 counter upper bound.

6.31. PWMG0 Counter Upper Bound Low Register (*pwmg0cubl*), IO address = 0x25

Bit	Reset	R/W	Description
7 - 6	-	WO	Bit[2:1] of PWMG0 counter upper bound.
5 - 0	-	-	Reserved

6.32. PWMG0 Duty Value High Register (*pwmg0dth*), IO address = 0x22

Bit	Reset	R/W	Description
7 - 0	-	WO	Duty values bit[10:3] of PWMG0.

6.33. PWMG0 Duty Value Low Register (*pwmg0dtl*), IO address = 0x23

Bit	Reset	R/W	Description
7 - 5	000	WO	Duty values bit [2:0] of PWMG0.
4 - 0	-	-	Reserved

Note: It's necessary to write PWMG0 Duty_Value Low Register before writing PWMG0 Duty_Value High Register.

6.34. Timer3 Control Register (tm3c), IO address = 0x32

Bit	Reset	R/W	Description
7 - 4	0000	R/W	Timer3 clock selection. 0000 : disable 0001 : CLK (system clock) 0010 : IHRC 0011 : reserved 0100 : ILRC 0101 : comparator output 011x : reserved 1000 : PA0 (rising edge) 1001 : ~PA0 (falling edge) 1010 : PB0 (rising edge) 1011 : ~PB0 (falling edge) 1100 : PA4 (rising edge) 1101 : ~PA4 (falling edge) 1101 : ~PA4 (falling edge) 1101 : ~PA4 (falling edge) 1101 : ~PA4 (falling edge)
3 - 2	00	R/W	Timer3 output selection. 00 : disable 01 : PB5 10 : PB6 11 : PB7
1	0	R/W	Timer3 mode selection. 0 / 1 : period mode / PWM mode

Bit	Reset	R/W	Description
0	0	R/W	Enable to inverse the polarity of Timer3 output. 0 / 1: disable / enable

6.35. Timer3 Counter Register (*tm3ct*), IO address = 0x33

	Bit	Reset	R/W	Description
7	- 0	0x00	R/W	Bit [7:0] of Timer3 counter register.

6.36. Timer3 Scalar Register (*tm3s*), IO address = 0x34

Bit	Reset	R/W	Description
7	0	WO	PWM resolution selection. 0 : 8-bit 1 : 6-bit
6 - 5	00	WO	Timer3 clock pre-scalar. $00: \div 1$ $01: \div 4$ $10: \div 16$ $11: \div 64$
4 - 0	00000	WO	Timer3 clock scalar.

6.37. Timer3 Bound Register (*tm3b*), IO address = 0x3f

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Timer3 bound register.

6.38. ADC Control Register (*adcc*), IO address = 0x3b

Bit	Reset	R/W	Description
7	0	R/W	Enable ADC function. 0/1: Disable/Enable.
6	0	R/W	ADC process control bit. Read "1" to indicate the ADC is ready.
5 - 2	0000	R/W	Channel selector. These four bits are used to select input signal for AD conversion. 0000: PB0/AD0, 0001: PB1/AD1, 0010: PB2/AD2, 0011: PB3/AD3, 0100: PB4/AD4, 0101: PB5/AD5, 0110: PB6/AD6, 0111: PB7/AD7, 1000: PA3/AD8, 1001: PA4/AD9,

Bit	Reset	R/W	Description
			1010: PA0/AD10, 1111: (Channel F) Bandgap reference voltage or 0.25*V _{DD} Others: reserved
0 - 1	-	-	Reserved. (keep 0 for future compatibility)

6.39. ADC Mode Register (*adcm*), IO address = 0x3c

Bit	Reset	R/W	Description
7 - 4	-	-	Reserved (keep 0 for future compatibility)
3 - 1	000	WO	ADC clock source selection. 000: CLK (system clock) ÷ 1, 001: CLK (system clock) ÷ 2, 010: CLK (system clock) ÷ 4, 011: CLK (system clock) ÷ 8, 100: CLK (system clock) ÷ 16, 101: CLK (system clock) ÷ 32, 110: CLK (system clock) ÷ 64, 111: CLK (system clock) ÷ 128,
0	-	-	Reserved

6.40. ADC Regulator Control Register (*adcrgc*), IO address = 0x3d

Bit	Reset	R/W	Description
7 - 5	000	WO	These three bits are used to select input signal for ADC reference high voltage. 000: V _{DD} , 001: 2V, 010: 3V, 011: 4V, 100: PB1, 101: Bandgap 1.20 volt reference voltage 110: Bandgap 1.60 volt reference voltage 111: Bandgap 2.40 volt reference voltage Others: reserved
4	0	WO	ADC channel F selector: 0: Bandgap reference voltage 1: 0.25*V _{DD} . The deviation is within ±0.01*V _{DD} mostly.
3 - 1	00	WO	Bandgap reference voltage selector for ADC channel F: 000: 1.2V 001: 1.6V 010: 2V 011: 2.4V

Bit	Reset	R/W	Description
			100: 3V 110: 4V
0	-	-	Reserved. Please keep 0.

6.41. ADC Result High Register (*adcrh*), IO address = 0x3e

Bit	Reset	R/W	Description
7 - 0	-	RO	These eight read-only bits will be the bit [11:4] of AD conversion result. The bit 7 of this register is the MSB of ADC result for any resolution.

6.42. ADC Result Low Register (*adcrl*), IO address = 0x3f

Bit	Reset	R/W	Description
7 - 4	-	RO	These four bits will be the bit [3:0] of AD conversion result.
3 - 0	-	-	Reserved

6.43. PWMG1 control Register (*pwmg1c*), IO address = 0x26

Bit	Reset	R/W	Description
7	0	WO	Enable PWMG1. 0 / 1 : disable / enable.
6	-	RO	Output of PWMG1.
5	0	WO	Enable to inverse the polarity of PWMG1 output. 0 / 1 : disable / enable.
4	0	WO	PWMG1 counter reset. Writing "1" to clear PWMG1 counter.
3 - 1	0	wo	Select PWMG1 output pin. 000: none 001: PB6 011: PA4 100: PB7 Others: reserved
0	0	WO	Clock source of PWMG1. 0 : SYSCLK 1 : IHRC or IHRC * 2 (by Code Option : PWM_Source)

6.44. PWMG1 Scalar Register (*pwmg1s*), IO address = 0x27

Bit	Reset	R/W	Description
7	0	WO	PWMG1 interrupt mode. 0: Generate interrupt when counter matches the duty value. 1: Generate interrupt when counter is 0.
6 - 5	0	WO	PWMG1 clock pre-scalar. 00 : ÷1 01 : ÷4 10 : ÷16 11 : ÷64
4 - 0	0	WO	PWMG1 clock divider.

6.45. PWMG1 Counter Upper Bound High Register (pwmg1cubh), IO address = 0x2A

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Bit[10:3] of PWMG1 counter upper bound.

6.46. PWMG1 Counter Upper Bound Low Register (pwmg1cubl), IO address = 0x2B

Bit	Reset	R/W	Description
7 - 6	00	WO	Bit[2:1] of PWMG1 counter upper bound.
5 - 0	-	-	Reserved

6.47. PWMG1 Duty Value High Register (*pwmg1dth*), IO address = 0x28

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Duty values bit[10:3] of PWMG1.

6.48. PWMG1 Duty Value Low Register (*pwmg1dtl*), IO address = 0x29

Bit	Reset	R/W	Description
7 - 5	000	WO	Duty values bit[2:0] of PWMG1.
4 - 0	-	-	Reserved

Note: It's necessary to write PWMG1 Duty_Value Low Register before writing PWMG1 Duty_Value High Register.

6.49. PWMG2 control Register (*pwmg2c*), IO address = 0x2C

Bit	Reset	R/W	Description
7	0	WO	Enable PWMG2. 0 / 1 : disable / enable.
6	-	RO	Output of PWMG2.
5	0	WO	Enable to inverse the polarity of PWMG2 output. 0 / 1 : disable / enable.

Bit	Reset	R/W	Description
4	0	WO	PWMG2 counter reset. Writing "1" to clear PWMG2 counter.
3 - 1	0	WO	Select PWMG2 output pin. 000: disable 001: PB3 011: PA3 100: PB2 101: PA5 (ICE does NOT support) Others: reserved
0	0	WO	Clock source of PWMG2. 0 : SYSCLK 1 : IHRC or IHRC * 2 (by Code Option : PWM_Source)

6.50. PWMG2 Scalar Register (pwmg2s), IO address = 0x2D

Bit	Reset	R/W	Description
			PWMG2 interrupt mode.
7	0	WO	0: Generate interrupt when counter matches the duty value.
			1: Generate interrupt when counter is 0.
			PWMG2 clock pre-scalar.
			00 : ÷1
6 - 5	0	WO	01 : ÷4
			10 : ÷16
			11 : ÷64
4 - 0	0	WO	PWMG2 clock divider.

6.51. PWMG2 Counter Upper Bound High Register (pwmg2cubh), IO address = 0x30

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Bit[10:3] of PWMG2 counter upper bound.

6.52. PWMG2 Counter Upper Bound Low Register (pwmg2cubl), IO address = 0x31

Bit	Reset	R/W	Description
7 – 6	00	WO	Bit[2:1] of PWMG2 counter upper bound.
5 - 0	-	-	Reserved

6.53. PWMG2 Duty Value High Register (pwmg2dth), IO address = 0x2E

Bit	Reset	R/W	Description
7 - 0	0x00	WO	Duty values bit[10:3] of PWMG2.

6.54. PWMG2 Duty Value Low Register (pwmg2dtl), IO address = 0x2F

Bit	Reset	R/W	Description
7 - 5	000	WO	Duty values bit[2:0] of PWMG2.
4 - 0	-	-	Reserved

Note: It's necessary to write PWMG2 Duty_Value Low Register before writing PWMG2 Duty_Value High Register.

7. Instructions

Symbol	Description
ACC	Accumulator (Abbreviation of accumulator)
а	Accumulator (symbol of accumulator in program)
sp	Stack pointer
flag	ACC status flag register
I	Immediate data
&	Logical AND
I	Logical OR
←	Movement
•	Exclusive logic OR
+	Add
_	Subtraction
~	NOT (logical complement, 1's complement)
⊤	NEG (2's complement)
ov	Overflow (The operational result is out of range in signed 2's complement number system)
z	Zero (If the result of ALU operation is zero, this bit is set to 1)
с	Carry (The operational result is to have carry out for addition or to borrow carry for subtraction in unsigned number system)
AC	Auxiliary Carry (If there is a carry out from low nibble after the result of ALU operation, this bit is set to 1)
IO.n	The bit of register
M.n	Only addressed in 0~0x3F (0~63) is allowed

7.1. Data Transfer Instructions

mov	a, I	Move immediate data into ACC.
mov	а, і	Example: <i>mov</i> a, 0x0f;
		Result: $a \leftarrow 0$ fh;
		Affected flags: $[N_{\perp}Z = [N_{\perp}C = [N_{\perp}AC = [N_{\perp}OV]]$
mov	M, a	Move data from ACC into memory
mov	ivi, a	Example: <i>mov</i> MEM, a;
		Result: MEM \leftarrow a
		Affected flags: $[N_{I}Z = [N_{I}C = [N_{I}AC = [N_{I}OV]]$
mov	a, M	Move data from memory into ACC
mov	a, w	Example: <i>mov</i> a, MEM ;
		Result: $a \leftarrow MEM$; Flag Z is set when MEM is zero.
	a 10	Affected flags: "Y_Z "N_C "N_AC "N_OV
mov	a, IO	Move data from IO into ACC
		Example: <i>mov</i> a, pa ;
		Result: $a \leftarrow pa$; Flag Z is set when pa is zero.
	10	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
mov	IO, a	Move data from ACC into IO
		Example: <i>mov</i> pb, a;
		Result: $pb \leftarrow a$
		Affected flags: "N Z "N C N AC N OV
ldt16	word	Move 16-bit counting values in Timer16 to memory in word.
		Example: <i>ldt16</i> word;
		Result: word ← 16-bit timer
		Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
		Application Example:
		word T16val ; // declare a RAM word
		 <i>clear</i> Ib@ T16val ; // clear T16val (LSB)
		<i>clear</i> hb@ T16val ; // clear T16val (MSB)
		stt16 T16val; // initial T16 with 0
		 set1 t16m.5; // enable Timer16
		 set0 t16m.5; // disable Timer 16
		<i>Idt16</i> T16val; // save the T16 counting value to T16val

stt16	word	Store 16-bit data from memory in word to Timer16.
		Example: stt16 word;
		Result: 16-bit timer ←word
		Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
		Application Example:
		word T16val ; // declare a RAM word
		<i>mov</i> a, 0x34 ;
		mov lb@ T16val , a ; // move 0x34 to T16val (LSB)
		<i>mov</i> a, 0x12 ;
		mov hb@ T16val , a ; // move 0x12 to T16val (MSB)
		stt16 T16val ; // initial T16 with 0x1234
idxm	a, index	Move data from specified memory to ACC by indirect method. It needs 2T to execute this
		instruction.
		Example: <i>idxm</i> a, index;
		Result: $a \leftarrow [index]$, where index is declared by word.
		Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
		Application Example:
		word RAMIndex ; // declare a RAM pointer
		<i>mov</i> a, 0x5B ; // assign pointer to an address (LSB)
		mov Ib@RAMIndex, a ; // save pointer to RAM (LSB)
		mov a, 0x00 ; // assign 0x00 to an address (MSB), should be 0
		mov hb@RAMIndex, a; // save pointer to RAM (MSB)
		<i>idxm</i> a, RAMIndex ; // mov memory data in address 0x5B to ACC
ldxm	index, a	Move data from ACC to specified memory by indirect method. It needs 2T to execute this
	,	instruction.
		Example: <i>idxm</i> index, a;
		Result: [index] \leftarrow a; where index is declared by word.
		Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
		Application Example:
		word RAMIndex ; // declare a RAM pointer
		<i>mov</i> a, 0x5B ; // assign pointer to an address (LSB)
		mov Ib@RAMIndex, a ; // save pointer to RAM (LSB)
		mov a, 0x00 ; // assign 0x00 to an address (MSB), should be 0
		mov hb@RAMIndex, a ; // save pointer to RAM (MSB)
		<i>mov</i> a, 0xA5 ;
		<i>idxm</i> RAMIndex, a ; // mov 0xA5 to memory in address 0x5B

xch M	Exchange data between ACC and memory						
	Example: xch MEM ; Result: MEM ← a , a ← MEM						
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV						
bushaf	Move the ACC and flag register to memory that address specified in the stack pointer. Example: pushaf; Result: [sp] ← {flag, ACC}; sp ← sp + 2; Affected flags: 『N』Z						
	Application Example:						
	.romadr 0x10 ; // ISR entry address						
	pushaf; // put ACC and flag into stack memory						
	… // ISR program						
	… // ISR program						
	popaf ; // restore ACC and flag from stack memory						
	reti ;						
oopaf	Restore ACC and flag from the memory which address is specified in the stack pointer.						
	Example: popaf;						
	Result: $sp \leftarrow sp - 2$;						
	$\{Flag, ACC\} \leftarrow [sp];$						
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV						

7.2. Arithmetic Operation Instructions

add a, l	Add immediate data with ACC, then put result into ACC
	Example: add a, 0x0f;
	Result: a ← a + 0fh
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
add a, M	Add data in memory with ACC, then put result into ACC
	Example: <i>add</i> a, MEM ;
	Result: a ← a + MEM
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
<i>add</i> M, a	Add data in memory with ACC, then put result into memory
	Example: add MEM, a;
	Result: MEM \leftarrow a + MEM
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
<i>addc</i> a, M	Add data in memory with ACC and carry bit, then put result into ACC
	Example: <i>addc</i> a, MEM ;
	Result: $a \leftarrow a + MEM + C$
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
<i>addc</i> M, a	Add data in memory with ACC and carry bit, then put result into memory
	Example: <i>addc</i> MEM, a ;
	Result: MEM \leftarrow a + MEM + C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV

<u> </u>	
addc a	Add carry with ACC, then put result into ACC
	Example: addc a;
	Result: a ← a + C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
addc M	Add carry with memory, then put result into memory
	Example: addc MEM;
	Result: MEM \leftarrow MEM + C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
nadd a, M	Add negative logic (2's complement) of ACC with memory
	Example: nadd a, MEM ;
	Result: $a \leftarrow \overline{\neg}a + MEM$
	Affected flags: "Y Z "Y C "Y AC "Y OV
nadd M, a	Add negative logic (2's complement) of memory with ACC
	Example: nadd MEM, a ;
	Result: MEM ← 〒MEM + a
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
sub a, l	Subtraction immediate data from ACC, then put result into ACC.
	Example: sub a, 0x0f;
	Result: $a \leftarrow a - 0$ fh ($a + [2's complement of 0$ fh])
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
sub a, M	Subtraction data in memory from ACC, then put result into ACC
	Example: sub a, MEM ;
	Result: $a \leftarrow a - MEM (a + [2's complement of M])$
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
sub M, a	Subtraction data in ACC from memory, then put result into memory
	Example: sub MEM, a;
	Result: MEM ← MEM - a (MEM + [2's complement of a])
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
subc a, M	Subtraction data in memory and carry from ACC, then put result into ACC
	Example: subc a, MEM;
	Result: a ← a – MEM - C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
subc M, a	Subtraction ACC and carry bit from memory, then put result into memory
	Example: subc MEM, a ;
	Result: MEM \leftarrow MEM – a - C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
subc a	Subtraction carry from ACC, then put result into ACC
	Example: subc a;
	Result: $a \leftarrow a - C$
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
subc M	Subtraction carry from the content of memory, then put result into memory
	Example: subc MEM;
	Result: MEM \leftarrow MEM - C
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV

inc M	Increment the content of memory			
	Example: inc MEM;			
	Result: MEM \leftarrow MEM + 1			
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV			
dec M	Decrement the content of memory			
	Example: dec MEM;			
	Result: MEM \leftarrow MEM - 1			
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV			
clear M	Clear the content of memory			
	Example: clear MEM;			
	Result: MEM $\leftarrow 0$			
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV			
mul	Multiplication operation, 8x8 unsigned multiplications will be executed.			
	Example: mul ;			
	Result: {MulRH,ACC} ← ACC * MulOp			
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV			
	Application Example :			
	mov a, 0x5a ;			
	mov mulop, a ;			
	mov a, 0xa5 ;			
	mul // 0x5A * 0xA5 = 3A02 (mulrh + ACC)			
	mov ram0, a ; // LSB, ram0=0x02			
	mov a, mulrh ; // MSB, ACC=0X3A			

7.3. Shift Operation Instructions

sr a	Shift right of ACC, shift 0 to bit 7
	Example: <i>sr</i> a ;
	Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
src a	Shift right of ACC with carry bit 7 to flag
	Example: <i>src</i> a ;
	Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
sr M	Shift right the content of memory, shift 0 to bit 7
	Example: <i>sr</i> MEM ;
	Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
src M	Shift right of memory with carry bit 7 to flag
	Example: <i>src</i> MEM ;
	Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV

sl a	Shift left of ACC shift 0 to bit 0
	Example: s/ a;
	Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
slc a	Shift left of ACC with carry bit 0 to flag
	Example: <i>slc</i> a ;
	Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
s/ M	Shift left of memory, shift 0 to bit 0
	Example: s/ MEM;
	Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
s <i>l</i> c M	Shift left of memory with carry bit 0 to flag
	Example: <i>slc</i> MEM ;
	Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV
swap a	Swap the high nibble and low nibble of ACC
	Example: <i>swap</i> a ;
	Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV

7.4. Logic Operation Instructions

and a, I	Perform logic AND on ACC and immediate data, then put result into ACC	
	Example: and a, 0x0f;	
	Result: a ← a & 0fh	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	
and a, M	Perform logic AND on ACC and memory, then put result into ACC	
	Example: and a, RAM10;	
	Result: a ← a & RAM10	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	
and M, a	Perform logic AND on ACC and memory, then put result into memory	
	Example: and MEM, a ;	
	Result: MEM ← a & MEM	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	
or a, l	Perform logic OR on ACC and immediate data, then put result into ACC	
	Example: <i>or</i> a, 0x0f ;	
	Result: a ← a 0fh	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	
<i>or</i> a, M	Perform logic OR on ACC and memory, then put result into ACC	
	Example: <i>or</i> a, MEM ;	
	Result: a ← a MEM	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	
or M, a	Perform logic OR on ACC and memory, then put result into memory	
	Example: <i>or</i> MEM, a ;	
	Result: MEM ← a MEM	
	Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV	

		Τ
xor	a, I	Perform logic XOR on ACC and immediate data, then put result into ACC
		Example: xor a, 0x0f;
		Result: $a \leftarrow a^{0}$ Ofh
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
xor	10, a	Perform logic XOR on ACC and IO register, then put result into IO register
		Example: xor pa, a ;
		Result: $pa \leftarrow a^pa$; // pa is the data register of port A
		Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
xor	a, M	Perform logic XOR on ACC and memory, then put result into ACC
	-)	Example: xor a, MEM;
		Result: $a \leftarrow a^{RAM10}$
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
vor	М, а	Perform logic XOR on ACC and memory, then put result into memory
xor	IVI, a	
		Example: xor MEM, a ;
		Result: MEM \leftarrow a ^ MEM
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
not	а	Perform 1's complement (logical complement) of ACC
		Example: not a;
		Result: $a \leftarrow \sim a$
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
		Application Example:
		mov a, 0x38 ; // ACC=0X38
		not a; // ACC=0XC7
not	М	Perform 1's complement (logical complement) of memory
		Example: not MEM;
		Result: MEM $\leftarrow \sim$ MEM
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
		Application Example:
		mov a, 0x38 ;
		mov mem, a ; // mem = 0x38
		not mem ; // mem = 0xC7
	-	
neg	а	Perform 2's complement of ACC
		Example: neg a;
		Result: a ← 〒a
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
		Application Example:
		mov a, 0x38 ; // ACC=0X38
		neg a; // ACC=0XC8

neg	М	Perform 2's complement of memory
		Example: neg MEM;
		Result: MEM ← 〒MEM
		Affected flags: 『Y』Z 『N』C 『N』AC 『N』OV
		Application Example:
		mov a, 0x38 ;
		mov mem, a ; // mem = 0x38
		not mem ; // mem = 0xC8
comp	a, M	Compare ACC with the content of memory
		Example: comp a, MEM;
		Result: Flag will be changed by regarding as (a - MEM)
		Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
		Application Example:
		mov mem, a ;
		comp a, mem ; // Z flag is set as 1
		mov a, 0x42 ;
		mov mem, a ;
		mov a, 0x38 ;
		comp a, mem ; // C flag is set as 1
comp	М, а	Compare ACC with the content of memory
		Example: comp MEM, a;
		Result: Flag will be changed by regarding as (MEM - a)
		Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
-		·

7.5. Bit Operation Instructions

<i>set0</i> IO.n	Set bit n of IO port to low			
	Example: set0 pa.5;			
	Result: set bit 5 of port A to low			
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV			
set1 IO.n	Set bit n of IO port to high			
	Example: set1 pb.5;			
	Result: set bit 5 of port B to high			
	Affected flags: $\[N_{ \] } Z \[N_{ \] } C \[N_{ \] } AC \[N_{ \] } OV$			
<i>swapc</i> IO.n	Swap the nth bit of IO port with carry bit			
	Example: swapc IO.0;			
	Result: $C \leftarrow IO.0$, $IO.0 \leftarrow C$			
	When IO.0 is a port to output pin, carry C will be sent to IO.0;			
	When IO.0 is a port from input pin, IO.0 will be sent to carry C;			
	Affected flags: 『N』Z 『Y』C 『N』AC 『N』OV			
	Application Example1 (serial output) :			

set0

set1

PFS132 8bit MTP MCU with 12-bit ADC

		_	
SE	et1 p	bac.0 ;	// set PA.0 as output
		0	// C=0
SV	vapc	pa.0 ;	// move C to PA.0 (bit operation), PA.0=0
se	et1 f	lag.1;	// C=1
sv	vapc	pa.0 ;	// move C to PA.0 (bit operation), PA.0=1
Applica	ation Exa	mple2 (serial	input) :
se	et0	pac.0 ;	// set PA.0 as input
sv	vapc	pa.0 ;	// read PA.0 to C (bit operation)
sr	с	а;	// shift C to bit 7 of ACC
sv	vapc	pa.0 ;	// read PA.0 to C (bit operation)
-		. .	
sr	C	а;	// shift new C to bit 7, old C
	C	а;	// shift new C to bit 7, old C
sr		a ; 	// shift new C to bit 7, old C
sr 	n of mer	mory to low	// shift new C to bit 7, old C
Sr Set bit Examp	n of mer	nory to low 0 MEM.5 ;	
Set bit Examp Result	n of mer ble: set set bit 5	nory to low 0 MEM.5 ; 5 of MEM to lov	
Set bit Examp Result Affecte	n of mer ble: set : set bit 5 ed flags:	nory to low 0 MEM.5 ; 5 of MEM to lov 『N』Z 『N	
Set bit Examp Result Affecte Set bit	n of mer ble: set : set bit 5 ed flags: n of mer	nory to low 0 MEM.5 ; 5 of MEM to lov 『N』Z 『N nory to high	
Set bit Examp Result Affecte Set bit Examp	n of mer ble: set : set bit 5 ed flags: n of mer ble: set	nory to low 0 MEM.5 ; 5 of MEM to lov 『N』Z 『N	៷ 』C 『N』AC 『N』OV

7.6. Conditional Operation Instructions

ceqsn a, l	Compare ACC with immediate data and skip next instruction if both are equal.		
	Flag will be changed like as $(a \leftarrow a - I)$		
	Example: <i>ceqsn</i> a, 0x55 ;		
	inc MEM;		
	goto error;		
	Result: If a=0x55, then "goto error"; otherwise, "inc MEM".		
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV		
<i>ceqsn</i> a, M	Compare ACC with memory and skip next instruction if both are equal.		
	Flag will be changed like as (a \leftarrow a - M)		
	Example: <i>ceqsn</i> a, MEM;		
	Result: If a=MEM, skip next instruction		
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV		

cneqsn a, M	Compare ACC with memory and skip next instruction if both are not equal.
onoqon a, m	Flag will be changed like as $(a \leftarrow a - M)$
	Example: $cneqsn$ a , MEM ;
	Result: If a≠MEM, skip next instruction
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
<i>cneqsn</i> a, l	Compare ACC with immediate data and skip next instruction if both are no equal.
	Flag will be changed like as (a \leftarrow a - I)
	Example: <i>cneqsn</i> a,0x55 ;
	inc MEM ;
	goto error ;
	Result: If a≠0x55, then "goto error"; Otherwise, "inc MEM".
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
<i>t0sn</i> IO.n	Check IO bit and skip next instruction if it's low
	Example: <i>t0sn</i> pa.5;
	Result: If bit 5 of port A is low, skip next instruction
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
<i>t1sn</i> IO.n	Check IO bit and skip next instruction if it's high
	Example: t1sn pa.5;
	Result: If bit 5 of port A is high, skip next instruction
	Affected flags: [®] N _J Z [®] N _J C [®] N _J AC [®] N _J OV
<i>t0sn</i> M.n	Check memory bit and skip next instruction if it's low
	Example: t0sn MEM.5 ; Result: If hit 5 of MEM is low, then skip payt instruction
	Result: If bit 5 of MEM is low, then skip next instructionAffected flags: $\[N \] Z \] \[N \] C \] \[N \] AC \] \[N \] OV$
<i>t1sn</i> M.n	Check memory bit and skip next instruction if it's high
	EX: t1sn MEM.5;
	Result: If bit 5 of MEM is high, then skip next instruction
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV
izsn a	Increment ACC and skip next instruction if ACC is zero
	Example: <i>izsn</i> a;
	Result: $a \leftarrow a + 1$, skip next instruction if $a = 0$
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
dzsn a	Decrement ACC and skip next instruction if ACC is zero
	Example: dzsn a;
	Result: A \leftarrow A - 1, skip next instruction if a = 0
	Affected flags: 『Y』Z 『Y』C 『Y』AC 『Y』OV
izsn M	Increment memory and skip next instruction if memory is zero Example: izsn MEM;
	Example: izsn MEM; Result: MEM ← MEM + 1, skip next instruction if MEM= 0
	Affected flags: $\mathbb{Y}_{\mathbb{Z}} \mathbb{Z} = \mathbb{Y}_{\mathbb{Z}} \mathbb{C} = \mathbb{Y}_{\mathbb{Z}} \mathbb{A} \mathbb{C} = \mathbb{Y}_{\mathbb{Z}} \mathbb{O} \mathbb{V}$
dzsn M	Decrement memory and skip next instruction if memory is zero
	Example: dzsn MEM;
	Result: MEM \leftarrow MEM - 1, skip next instruction if MEM = 0
	Affected flags: "Y _J Z "Y _J C "Y _J AC "Y _J OV
-	

7.7. System control Instructions

call label	Function call address can be full range address space				
call label	Function call, address can be full range address space Example: <i>call</i> function1;				
	Result: $[sp] \leftarrow pc + 1$				
	$pc \leftarrow function1$				
	$sp \leftarrow sp + 2$				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
<i>goto</i> label	Go to specific address which can be full range address space				
	Example: <i>goto</i> error;				
	Result: Go to error and execute program.				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
ret I	Place immediate data to ACC, then return				
	Example: <i>ret</i> 0x55;				
	Result: $A \leftarrow 55h$				
	ret ;				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
ret	Return to program which had function call				
	Example: ret;				
	Result: sp \leftarrow sp - 2				
	pc ← [sp]				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
reti	Return to program from interrupt service routine. After this command is executed, global				
	interrupt is enabled automatically.				
	Example: <i>reti</i> ;				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
nop	No operation				
	Example: <i>nop</i> ;				
	Result: nothing changed				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
pcadd a	Next program counter is current program counter plus ACC.				
-	Example: pcadd a;				
	Result: pc \leftarrow pc + a				
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV				
	Application Example:				
	mov a, 0x02 ;				
	pcadd a; // PC <- PC+2				
	goto err1;				
	goto correct ; // jump here				
	goto err2 ;				
	goto err3 ;				
	 correct: // jump bere				
	correct: // jump here				

	Enable global interrupt enable					
engint	Example: engint;					
	Result: Interrupt request can be sent to CPU					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					
disgint	Disable global interrupt enable					
	Example: disgint ;					
	Result: Interrupt request is blocked from CPU					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					
stopsys	System halt.					
	Example: stopsys;					
	Result: Stop the system clocks and halt the system					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					
stopexe	CPU halt. The oscillator module is still active to output clock, however, system clock is disabled					
	to save power.					
	Example: stopexe;					
	Result: Stop the system clocks and keep oscillator modules active.					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					
reset	Reset the whole chip, its operation will be same as hardware reset.					
	Example: reset;					
	Result: Reset the whole chip.					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					
wdreset	Reset Watchdog timer.					
	Example: wdreset ;					
	Result: Reset Watchdog timer.					
	Affected flags: 『N』Z 『N』C 『N』AC 『N』OV					

7.8. Summary of Instructions Execution Cycle

2T		goto, call, idxm, pcadd, ret, reti,
2T	Condition is fulfilled.	agen energen toen tien deen izen
1T	Condition is not fulfilled.	ceqsn, cneqsn, t0sn, t1sn, dzsn, izsn
1T		Others

7.9. Summary of affected flags by Instructions

Instruction	Z	С	AC	ον	Instruction	Ζ	С	AC	ov	Instruction	Z	С	AC	ov
<i>mov</i> a, l	-	-	-	-	<i>mov</i> M, a	I	-	-	-	<i>mov</i> a, M	Υ	-	-	-
<i>mov</i> a, IO	Υ	-	-	-	<i>mov</i> IO, a	I	-	-	-	<i>ldt16</i> word	-	-	-	-
stt16 word	-	-	-	-	<i>idxm</i> a, index	I	-	-	-	<i>idxm</i> index, a	-	-	-	-
<i>xch</i> M	-	-	-	-	pushaf	-	-	-	-	popaf	Υ	Y	Υ	Y
add a, I	Y	Υ	Y	Y	add a, M	Y	Y	Y	Y	<i>add</i> M, a	Υ	Y	Υ	Y
addca, M	Y	Υ	Y	Υ	<i>addc</i> M, a	Y	Υ	Y	Y	addc a	Υ	Υ	Υ	Y
addc M	Y	Υ	Y	Υ	nadd a, M	Y	Υ	Y	Y	nadd M, a	Υ	Υ	Υ	Y
sub a, l	Y	Υ	Y	Υ	sub a, M	Υ	Υ	Y	Y	<i>sub</i> M, a	Υ	Υ	Υ	Υ
subc a, M	Y	Y	Y	Y	<i>subc</i> M, a	Y	Y	Y	Y	subc a	Y	Y	Υ	Y
subc M	Y	Y	Y	Y	inc M	Y	Y	Y	Y	dec M	Y	Y	Υ	Y
clear M	-	-	-	-	mul	-	-	-	-	sr a	-	Υ	-	-
src a	-	Υ	-	-	sr M	-	Y	-	-	src M	-	Y	-	-
sl a	-	Υ	-	-	<i>sl</i> c a	-	Y	-	-	s/ M	-	Y	-	-
slc M	-	Υ	-	-	swap a	-	-	-	-	and a, l	Υ	-	-	-
and a, M	Y	-	-	-	and M, a	Y	-	-	-	or a, l	Υ	-	-	-
or a, M	Y	-	-	-	or M, a	Y	-	-	-	<i>xor</i> a, l	Υ	-	-	-
<i>xor</i> IO, a	-	-	-	-	<i>xor</i> a, M	Y	-	-	-	<i>xor</i> M, a	Υ	-	-	-
<i>not</i> a	Y	-	-	-	not M	Y	-	-	-	neg a	Υ	-	-	-
neg M	Y	-	-	-	comp a, M	Y	Y	Y	Y	сотр М, а	Υ	Y	Υ	Y
set0 IO.n	-	-	-	-	<i>set1</i> IO.n	-	-	-	-	<i>set0</i> M.n	-	-	-	-
<i>set1</i> M.n	-	-	-	-	swapc IO.n	-	Y	-	-	ceqsn a, l	Υ	Y	Υ	Y
ceqsn a, M	Y	Υ	Y	Y	cneqsn a,M	Y	Y	Y	Y	cneqsn a, l	Υ	Y	Υ	Y
<i>t0sn</i> IO.n	-	-	-	-	<i>t1sn</i> IO.n	-	-	-	-	<i>t0sn</i> M.n	-	-	-	-
<i>t1sn</i> M.n	-	-	-	-	izsn a	Y	Y	Y	Y	dzsn a	Y	Y	Υ	Y
izsn M	Y	Y	Y	Y	dzsn M	Y	Y	Y	Y	<i>call</i> label	-	-	-	-
goto label	-	-	-	-	ret I	-	-	-	-	ret	-	-	-	-
reti	-	-	-	-	nop	-	-	-	-	<i>pcadd</i> a	-	-	-	-
engint	-	-	-	-	disgint	-	-	-	-	stopsys	-	-	-	-
stopexe	-	-	-	-	reset	-	-	-	-	wdreset	-	-	-	-

7.10. BIT definition

Bit defined: Only addressed at 0x00 ~ 0x3F.

8. Code Options

Option	Selection	Description					
	Enable	MTP content is protected and program cannot be read back					
Security	Disable	MTP content is not protected so program can be read back					
	4.0V	Select LVR = 4.0V					
	3.5V	Select LVR = 3.5V					
	3.0V	Select LVR = 3.0V					
	2.75V	Select LVR = 2.75V					
LVR	2.5V	Select LVR = 2.5V					
	2.2V	Select LVR = 2.2V					
	2.0V	Select LVR = 2.0V					
	1.8V	Select LVR = 1.8V					
Poot up Timo	Slow	Please refer to t _{WUP} and t _{SBP} in Section 4.1					
Boot-up_Time	Fast	Please refer to twup and tSBP in Section 4.1					
		When pwmg0c.0= 1, PWMG0 clock source = IHRC = 16MHZ					
	16MHZ	When pwmg1c.0= 1, PWMG1 clock source = IHRC = 16MHZ					
		When pwmg2c.0= 1, PWMG2 clock source = IHRC = 16MHZ					
PWM_Source	32MHZ	When pwmg0c.0= 1, PWMG0 clock source = IHRC*2 = 32MHZ					
		When pwmg1c.0= 1, PWMG1 clock source = IHRC*2 = 32MHZ					
		When pwmg2c.0= 1, PWMG2 clock source = IHRC*2 = 32MHZ					
		(ICE does NOT Support.)					
	Disable	GPC/ PWM are independent					
GPC_PWM	Enable	GPC output control PWM output (ICE does NOT Support.)					
	PA.0	INTEN/ INTRQ.Bit0 is from PA.0					
Interrupt Src0	PB.5	INTEN/ INTRQ.Bit0 is from PB.5					
	PB.0	INTEN/ INTRQ.Bit1 is from PB.0					
Interrupt Src1	PA.4	INTEN/ INTRQ.Bit1 is from PA.4					
	All_Edge	The comparator will trigger on interrupt on the riging adaptor folling adaptor					
	(default)	The comparator will trigger an interrupt on the rising edge or falling edge					
Comparator_Edge	Rising_Edge	The comparator will trigger an interrupt on the rising edge					
	Falling_Edge	The comparator will trigger an interrupt on the falling edge					

Option	Selection Description				
	16MHZ	When <i>TM2C</i> [7:4]= 0010, TM2 clock source = IHRC = 16MHZ			
	(default)	When <i>TM3C</i> [7:4]= 0010, TM3 clock source = IHRC = 16MHZ			
TMx_Source		When <i>TM2C</i> [7:4]= 0010, TM2 clock source = IHRC*2 = 32MHZ			
	32MHZ	When <i>TM3C</i> [7:4]= 0010, TM3 clock source = IHRC*2 = 32MHZ			
		(ICE does NOT Support.)			
	6 Bit	When <i>TM</i> 2S.7=1, TM2 PWM resolution is 6 Bit			
	(default)	When <i>TM3S</i> .7=1, TM3 PWM resolution is 6 Bit			
TMx_Bit		When <i>TM</i> 2S.7=1, TM2 PWM resolution is 7 Bit			
	7 Bit	When <i>TM3S</i> .7=1, TM3 PWM resolution is 7 Bit			
		(ICE does NOT Support.)			
	Normal	PB4 & PB7 Drive/ Sink Current is Normal			
PB4_PB7_Drive	Strong	PB4 & PB7 Drive/ Sink Current is Strong			
	Strong	(ICE does NOT Support.)			

9. Special Notes

This chapter is to remind user who use PFS132 series IC in order to avoid frequent errors upon operation.

9.1. Using IC

9.1.1. IO pin usage and setting

- (1) IO pin as digital input
 - When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature. Please follow the minimum value of Vih and the maximum value of Vil.
 - The value of internal pull high resistor would also changes with the voltage, temperature and pin voltage. It is not the fixed value.
- (2) IO pin as digital input and enable wakeup function
 - Configure IO pin as input
 - Set PADIER and PBDIER registers to set the corresponding bit to 1.
- (3) PA5 is set to be output pin
 - PA5 can be set to be Open-Drain output pin only, output high requires adding pull-high resistor.
- (4) PA5 is set to be PRSTB input pin
 - Configure PA5 as input
 - Set CLKMD.0=1 to enable PA5 as PRSTB input pin

- (5) PA5 is set to be input pin and to connect with a push button or a switch by a long wire
 - Needs to put a >33 Ω resistor in between PA5 and the long wire
 - Avoid using PA5 as input in such application.
- (6) PA7 and PA6 as external crystal oscillator
 - Configure PA7 and PA6 as input
 - Disable PA7 and PA6 internal pull-high resistor
 - Configure PADIER register to set PA6 and PA7 as analog input
 - EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :
 - ♦ 01 : for lower frequency, ex : 32KHz
 - ♦ 10 : for middle frequency, ex : 455KHz, 1MHz
 - ♦ 11 : for higher frequency, ex : 4MHz
 - Program EOSCR.7 =1 to enable crystal oscillator
 - Ensure EOSC working well before switching from IHRC or ILRC to EOSC

(7) In order to provide the IC with better electrical characteristics, please add a 0.1uF capacitor as close as possible to the VDD/GND of IC. And it is recommended to connect an electrolytic capacitor at least 10uF in parallel.

Note: Please be sure to read the contents of PMC-APN013 carefully. According to this, the crystal oscillator should be used reasonably. If the following situations happen to cause IC start-up slowly or non-startup, PADAUK Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the usage conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are unreasonable.

9.1.2. Interrupt

- (1) When using the interrupt function, the procedure should be:
 - Step1: Set INTEN register, enable the interrupt control bit
 - Step2: Clear INTRQ register
 - Step3: In the main program, using ENGINT to enable CPU interrupt function
 - Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine
 - Step5: After the Interrupt Service Routine being executed, return to the main program

*Use DISGINT in the main program to disable all interrupts

*When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG register. POPAF instruction is to restore ALU and FLAG register before RETI as below:

void Interrupt (void) // Once the interrupt occurs, jump to interrupt service routine

{ // enter DISGINT status automatically, no more interrupt is accepted
PUSHAF;

. . .

POPAF;

- } // RETI will be added automatically. After RETI being executed, ENGINT status will be restored
- (2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function
- (3) PA4 and PB5 can be used as external interrupt pins. When using the PA4 as external interrupt pin, the setting method of inten/intrq/integs registers are same as that of PB0, the only difference is to choose PB0 or PA4 as source of interrupt_Src1 in PADAUK_CODE_OPTION. Similarly, when using the PB5 as external interrupt pin, the setting method of inten/intrq/integs registers are same as that of PA0, the only difference is to choose PB0 is to choose PA0 or PB5 as source of interrupt_Src0 in PADAUK_CODE_OPTION.

9.1.3. System clock switching

(1) System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and turn off the original clock source at the same time. For example: When switching from clock A to clock B, please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.

(2)

• Case 1 : Switch system clock from ILRC to IHRC/2

CLKMD =	0x36;	// switch to IHRC, ILRC can not be disabled here
CLKMD.2 =	0;	// ILRC can be disabled at this time

- Case 2 : Switch system clock from ILRC to EOSC
 CLKMD = 0xA6; // switch to EOSC, ILRC can not be disabled here
 CLKMD.2 = 0; // ILRC can be disabled at this time
- ERROR. Switch ILRC to IHRC and turn off ILRC simultaneously

CLKMD = 0x50; // MCU will hang

(3) Please ensure the EOSC oscillation has established before switching from ILRC or IHRC to EOSC. MCU will not check its status. Please wait for a while after enabling EOSC. System clock can be switched to EOSC afterwards. Otherwise, MCU will hang. The example for switching system clock from ILRC to 4MHz EOSC after boot up is as below:

.ADJUST_IC	SYSCLK=ILRC;	
\$ EOSCR	Enable, 4MHz;	// 4MHz EOSC start to oscillate.
		// delay time to wait crystal oscillator stable
\$ T16M EOSC	, /1, BIT10	
Word Count =	0;	
Stt16 Count;		
Intrq.T16 = 0;		
do		

{ nop; }while(!Intrq.T16); CLKMD = 0xA4; CLKMD.2 = 0;

// ILRC -> EOSC; // turn off ILRC only if necessary

The delay duration should be adjusted in accordance with the characteristic of the crystal and PCB. To measure the oscillator signal by the oscilloscope, please select (x10) on the probe and measure through PA6(X2) pin to avoid the interference on the oscillator.

9.1.4. Watchdog

Watchdog is open by default, but when the program executes ADJUST_IC, the watchdog will be closed. To use the watchdog, you need to reconfigure the open. Watchdog will be inactive once ILRC is disabled.

9.1.5. TIMER time out

When select \$ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M counts from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the second interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as 1 to generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter is restarted, the next interrupt will occur once Bit8 turns from 0 to 1.

If select \$ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with setting INTEGS methods.

9.1.6. IHRC

- (1) The IHRC frequency calibration is performed when IC is programmed by the writer.
- (2) Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the
- (3) IHRC frequency (either for package or COB), if the calibration is done before molding process, the actual IHRC frequency after molding may be deviated or becomes out of spec. Normally, the frequency is getting slower a bit.
- (4) It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not
- (5) take any responsibility for this situation.
- (6) Users can make some compensatory adjustments according to their own experiences. For example, users
- (7) can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.

9.1.7. LVR

- (8) VDD must reach or above 2.0V for successful power-on process; otherwise IC will be inactive.
- (9) The setting of LVR (1.8V, 2.0V, 2.2V etc.) will be valid just after successful power-on process.
- (10)User can set MISC.2 as "1" to disable LVR. However, VDD must be kept as exceeding the lowest working voltage of chip; Otherwise IC may work abnormally.

9.1.8. The result of Comparator controls the PWM output pins

The special function of GPC_PWM in PADAUK_CODE_OPTION is used to control the output pins of PWM modules including TM2, TM3 and PWMG0 / PWMG1 / PWMG2 according to the status of gpcc.6. Any output pins of those PWM modules will go to 0 when gpcc.6 is 1 and go back to normal PWM function when gpcc.6 is 0.

9.1.9. Program Writing

Please use 5S-P-003 to program. 3S-P-002 or older versions do not support programming PFS132. Jumper connection: Please follow the instruction inside the writer software to connect the jumper. Please select the following program mode according to the actual situation.

Normal Programming Mode

Range of application:

- Single-Chip-Package IC with programming at the writer IC socket or on the handler.
- Multi-Chip-Package(MCP) with PFS132. Be sure its connected IC and devices will not be damaged by the following voltages, and will not clam the following voltages.

The voltage conditions in normal programming mode:

- (1) VDD is 7.5V, and the maximum supply current is up to about 20mA.
- (2) PA5 is 5.0V.
- (3) The voltages of other program pins (except GND) are the same as VDD.

Important Cautions:

- You MUST follow the instructions on APN004 and APN011 for programming IC on the handler.
- Connecting a 0.01uF capacitor between VDD and GND at the handler port to the IC is always good for suppressing disturbance. But please DO NOT connect with > 0.01uF capacitor, otherwise, programming mode may be fail.

Limited-Voltage Programming Mode

Range of application:

- On-Board writing. Its peripheral circuits and devices will not be damaged by the following voltages, and will not clam the following voltages. Please refer to Chapter 13.3 for more details about On-Board Writing.
- Multi-Chip-Package(MCP) with PFS132. Please be sure that its connected IC and devices will not be damaged by the following voltages, and will not clam the following voltages.

The voltage conditions in Limited-Voltage programming mode:

- (1) VDD is 5.0V, and the maximum supply current is up to about 20mA.
- (2) PA5 is 5.0V.
- (3) The voltage of other program pins (except GND) is the same as VDD.

Please select "MTP On-Board VDD Limitation" or "On-Board Program" on the writer screen to enable the limited-voltage programming mode. (Please refer to the file of Writer "5S-P-003 UM").

On-Board Writing

PFS132 can support On-board writing. On-Board Writing is known as the situation that the IC have to be programmed when the IC itself and other peripheral circuits and devices have already been mounted on the PCB. Five wires of 5S-P-003 are used for On-Board Writing: ICPCK, ICPDA, VDD, GND and ICVPP. They are used to connect PA3, PA6, VDD, GND and PA5 of the IC correspondingly.

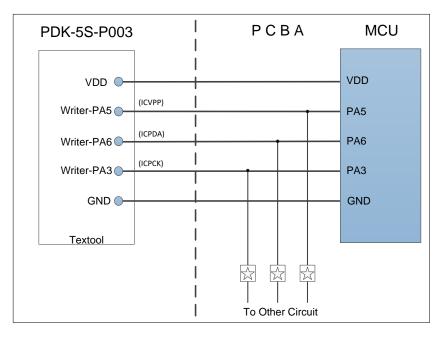


Fig. 24: Schematic Diagram of On-Board Wiring

The symbol \ddagger on Fig. 24 can be either resistors or capacitors. They are used to isolate the programming signal wires from the peripheral circuit. it should be ≥ 10 K Ω for resistance while ≤ 220 pF for capacitance.

Notice:

- In general, the limited-voltage programming mode is used in On-board Writing, please refers to the 13.2 for more detail about limited-voltage programming mode.
- Any zener diode ≤5.0V, or any circuitry which clam the 5.0V to be created SHOULD NOT be connected between VDD and GND of the PCB.
- Any capacitor ≥500uF SHOULD NOT be connected between VDD and GND of the PCB.
- In general, the writing signal pins PA3, PA5 and PA6 SHOULD NOT be considered as strong output pins.

9.2. Using ICE

It is recommended to use 6S-M-001 for emulation of PFS132. The following items should be noted when using 6S-M-001 to emulate PFS132:

- 6S-M-001 doesn't support the instruction NADD/COMP of PFS132.
- 6S-M-001 LCD Bias voltage PB3 be replace by PB1.
- 6S-M-001 doesn't support ADCRGC 1.6V / 2.4V channel or reference.
- 6S-M-001 doesn't support PWMG2C.PA5 output.
- When simulating PWM waveform, please check the waveform during program running. When the ICE is suspended or single-step running, its waveform may be inconsistent with the reality.
- The ILRC frequency of the 6S-M-001 simulator is different from the actual IC and is uncalibrated, with a frequency range of about 50K~65KHz.